Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

26-07-2021 | Research Article-Computer Engineering and Computer Science

A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods

Author: Ferhat Bozkurt

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Prediction of human physical activities has become a necessity for some applications that come with the development of wearable and portable hardware such as smartwatches and smartphones. The task of Human Activity Recognition (HAR) is to recognize human physical activities, e.g., walking, sitting, and running, using the data collected from sensors, e.g., accelerometers and gyroscope. HAR is commonly applied on smart systems, such as smartphones, to serve the understanding of a user’s behaviors and provide assistance to the user because of the rapid development of ubiquitous computing technology in recent years. Thus, predicting activities, such as standing, walking, sitting, during the day have become a popular topic in machine and deep learning. The aim of this study is to predict the user’s activities based on context information gathered by sensors such as gyroscopes and accelerometers. The conducted classification algorithms extract features from training data and learn a classification model based on the features to predict activity. In this paper, various classical machine and deep learning techniques have been studied and compared for human activity recognition. A comparative analysis is performed between techniques in order to select the classifier with the best recognition performance. Experimental results show that established Deep Neural Network (DNN) model achieved an accuracy of up to 96.81% and mean absolute error of up to 0.03 on publicly available UCI-HAR dataset. This method has given the best performance between conducted classification methods in this study to predict human activity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Jobanputra, C.; Bavishi, J.; Doshi, N.: Human activity recognition: a survey. Procedia Comput. Sci. 155, 698–703 (2019)CrossRef Jobanputra, C.; Bavishi, J.; Doshi, N.: Human activity recognition: a survey. Procedia Comput. Sci. 155, 698–703 (2019)CrossRef
5.
go back to reference Majumder, S.; Mondal, T.; Deen, M.J.: A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens. J. 19(6), 2320–2329 (2018)CrossRef Majumder, S.; Mondal, T.; Deen, M.J.: A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sens. J. 19(6), 2320–2329 (2018)CrossRef
6.
go back to reference Chen, Y.; Shen, C.: Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access. 5, 3095–3110 (2017)CrossRef Chen, Y.; Shen, C.: Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access. 5, 3095–3110 (2017)CrossRef
7.
go back to reference Jain, A.; Kanhangad, V.: Human activity classification in smartphones using accelerometer and gyroscope sensors. IEEE Sens. J. 18(3), 1169–1177 (2017)CrossRef Jain, A.; Kanhangad, V.: Human activity classification in smartphones using accelerometer and gyroscope sensors. IEEE Sens. J. 18(3), 1169–1177 (2017)CrossRef
9.
go back to reference Gjoreski, H., Bizjak, J., Gjoreski, M., Gams, M.: Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer. In: Proceedings of the IJCAI 2016 Workshop on Deep Learning for Artificial Intelligence, vol. 10, New York, NY, USA (2016) Gjoreski, H., Bizjak, J., Gjoreski, M., Gams, M.: Comparing deep and classical machine learning methods for human activity recognition using wrist accelerometer. In: Proceedings of the IJCAI 2016 Workshop on Deep Learning for Artificial Intelligence, vol. 10, New York, NY, USA (2016)
11.
go back to reference Cheng, W.: Accurate and efficient human activity recognition. PhD Thesis, The University Of Melbourne (2018) Cheng, W.: Accurate and efficient human activity recognition. PhD Thesis, The University Of Melbourne (2018)
12.
go back to reference Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V.: GCHAR: an efficient group-based context-aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018)CrossRef Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V.: GCHAR: an efficient group-based context-aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018)CrossRef
15.
go back to reference Fan, X., Zhang, H., Leung, C., Miao, C.: Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 168–173 (2016) Fan, X., Zhang, H., Leung, C., Miao, C.: Comparative study of machine learning algorithms for activity recognition with data sequence in home-like environment. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 168–173 (2016)
17.
go back to reference Hoseini-Tabatabaei, S.A.; Gluhak, A.; Tafazolli, R.: A survey on smartphone based systems for opportunistic user context recognition. ACM Comput. Surv. 27, 45 (2013) Hoseini-Tabatabaei, S.A.; Gluhak, A.; Tafazolli, R.: A survey on smartphone based systems for opportunistic user context recognition. ACM Comput. Surv. 27, 45 (2013)
18.
go back to reference Incel, O.D.; Kose, M.; Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)CrossRef Incel, O.D.; Kose, M.; Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)CrossRef
19.
go back to reference Lara, O.D.; Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)CrossRef Lara, O.D.; Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)CrossRef
20.
go back to reference Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012) Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)
21.
go back to reference Kharat, M.V.; Walse, K.H.; Dharaskar, R.V.: Survey on soft computing approaches for human activity recognition. Int. J. Sci. Res. 6(2), 1328–1334 (2015) Kharat, M.V.; Walse, K.H.; Dharaskar, R.V.: Survey on soft computing approaches for human activity recognition. Int. J. Sci. Res. 6(2), 1328–1334 (2015)
22.
go back to reference Dhiman, C.; Vishwakarma, D.K.: A review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 77, 21–45 (2019)CrossRef Dhiman, C.; Vishwakarma, D.K.: A review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 77, 21–45 (2019)CrossRef
23.
go back to reference Singh, T.; Vishwakarma, D.K.: Video benchmarks of human action datasets: a review. Artif. Intell. Rev. 52(2), 1107–1154 (2019)CrossRef Singh, T.; Vishwakarma, D.K.: Video benchmarks of human action datasets: a review. Artif. Intell. Rev. 52(2), 1107–1154 (2019)CrossRef
24.
go back to reference Singh, T., Vishwakarma, D.K.: Human activity recognition in video benchmarks: a survey. In: Advances in Signal Processing and Communication, Springer, Singapore, pp. 247–259 (2019) Singh, T., Vishwakarma, D.K.: Human activity recognition in video benchmarks: a survey. In: Advances in Signal Processing and Communication, Springer, Singapore, pp. 247–259 (2019)
26.
go back to reference Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International Workshop on Ambient Assisted Living. Springer, Berlin, pp. 216–223 (2012). https://doi.org/10.1007/978-3-642-35395-6_30 Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International Workshop on Ambient Assisted Living. Springer, Berlin, pp. 216–223 (2012). https://​doi.​org/​10.​1007/​978-3-642-35395-6_​30
27.
go back to reference Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann, vol. 3, p. 3 (2013) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann, vol. 3, p. 3 (2013)
28.
go back to reference Ronao, C.A., Cho, S.B.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: IEEE/2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, pp. 681–686 (2014) Ronao, C.A., Cho, S.B.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: IEEE/2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, pp. 681–686 (2014)
29.
go back to reference Li, Y.; Shi, D.; Ding, B.; Liu, D.: Unsupervised feature learning for human activity recognition using smartphone sensors. In: Mining Intelligence and Knowledge Exploration, Springer, Cham, pp. 99–107 (2014) Li, Y.; Shi, D.; Ding, B.; Liu, D.: Unsupervised feature learning for human activity recognition using smartphone sensors. In: Mining Intelligence and Knowledge Exploration, Springer, Cham, pp. 99–107 (2014)
30.
go back to reference Kolosnjaji, B., Eckert, C.: Neural network-based user-independent physical activity recognition for mobile devices. In: Proceedings of the IDEAL: 16th International Conference, Springer, Cham, pp. 378–386 (2015) Kolosnjaji, B., Eckert, C.: Neural network-based user-independent physical activity recognition for mobile devices. In: Proceedings of the IDEAL: 16th International Conference, Springer, Cham, pp. 378–386 (2015)
31.
go back to reference Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y.: A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 16(11), 4566–4578 (2016)CrossRef Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y.: A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 16(11), 4566–4578 (2016)CrossRef
32.
go back to reference Zaki, Z.; Shah, M.A.; Wakil, K.; Sher, F.: Logistic regression based human activities recognition. J. Mech. Continu. Math. Sci. 15(4), 228–246 (2020) Zaki, Z.; Shah, M.A.; Wakil, K.; Sher, F.: Logistic regression based human activities recognition. J. Mech. Continu. Math. Sci. 15(4), 228–246 (2020)
33.
go back to reference Jiang, W., Yin, Z.: Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1307–1310 (2015) Jiang, W., Yin, Z.: Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 1307–1310 (2015)
35.
go back to reference Almaslukh, B.; AlMuhtadi, J.; Artoli, A.: An effective deep autoencoder approach for online smartphone-based human activity recognition. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(4), 160–165 (2017) Almaslukh, B.; AlMuhtadi, J.; Artoli, A.: An effective deep autoencoder approach for online smartphone-based human activity recognition. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(4), 160–165 (2017)
37.
go back to reference Bhattacharjee, S., Kishore, S., Swetapadma, A.: A comparative study of supervised learning techniques for human activity monitoring using smart sensors. In: IEEE/2018 Second International Conference on Advances in Electronics, Computers and Communications, Bangalore, India, pp 1–4 (2018) Bhattacharjee, S., Kishore, S., Swetapadma, A.: A comparative study of supervised learning techniques for human activity monitoring using smart sensors. In: IEEE/2018 Second International Conference on Advances in Electronics, Computers and Communications, Bangalore, India, pp 1–4 (2018)
38.
go back to reference Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)CrossRef Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)CrossRef
40.
go back to reference Metin, İ.A., Karasulu, B.: İnsan Aktivitelerinin Sınıflandırılmasında Tekrarlayan Sinir Ağı Kullanan Derin Öğrenme Tabanlı Yaklaşım. Veri Bilimi. 2(2), 1–10 (in Turkish with an abstract in English) (2015) Metin, İ.A., Karasulu, B.: İnsan Aktivitelerinin Sınıflandırılmasında Tekrarlayan Sinir Ağı Kullanan Derin Öğrenme Tabanlı Yaklaşım. Veri Bilimi. 2(2), 1–10 (in Turkish with an abstract in English) (2015)
41.
go back to reference Sikder, N., Chowdhury, M.S., Arif, A.S.M., Nahid, A.A.: Human activity recognition using multichannel convolutional neural network. In: IEEE/2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, pp. 560–565 (2019) Sikder, N., Chowdhury, M.S., Arif, A.S.M., Nahid, A.A.: Human activity recognition using multichannel convolutional neural network. In: IEEE/2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, pp. 560–565 (2019)
43.
go back to reference Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: IEEE/2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, pp. 486–491 (2020) Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: IEEE/2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, pp. 486–491 (2020)
44.
go back to reference Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)MATH Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)MATH
45.
go back to reference Yağanoğlu, M., Bozkurt, F., Günay, F.B.: EEG tabanli beyin-bilgisayar arayüzü sistemlerinde öznitelik çikarma yöntemleri. Mühendislik Bilimleri ve Tasarım Dergisi 2(3), 313–318 (in Turkish with an abstract in English) (2014) Yağanoğlu, M., Bozkurt, F., Günay, F.B.: EEG tabanli beyin-bilgisayar arayüzü sistemlerinde öznitelik çikarma yöntemleri. Mühendislik Bilimleri ve Tasarım Dergisi 2(3), 313–318 (in Turkish with an abstract in English) (2014)
46.
go back to reference Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
47.
go back to reference Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRef Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRef
50.
go back to reference Vishwakarma, D.K.; Dhiman, C.: A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel. Visual Comput. 35(11), 1595–1613 (2019)CrossRef Vishwakarma, D.K.; Dhiman, C.: A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel. Visual Comput. 35(11), 1595–1613 (2019)CrossRef
51.
go back to reference Zhang, H., Berg, A. C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2126–2136 (2006) Zhang, H., Berg, A. C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2126–2136 (2006)
52.
go back to reference Vishwakarma, D.K.; Singh, K.: Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Trans. Cognit. Dev. Syst. 9(4), 316–327 (2016)CrossRef Vishwakarma, D.K.; Singh, K.: Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Trans. Cognit. Dev. Syst. 9(4), 316–327 (2016)CrossRef
53.
go back to reference Alpaydin, E.: Introduction to Machine Learning, MIT press (2020) Alpaydin, E.: Introduction to Machine Learning, MIT press (2020)
54.
go back to reference Alzubi, J.; Nayyar, A.; Kumar, A.: Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser. 1142(1), 012012 (2018)CrossRef Alzubi, J.; Nayyar, A.; Kumar, A.: Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser. 1142(1), 012012 (2018)CrossRef
55.
go back to reference Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X.: Applied Logistic Regression. Wiley, New York (2013)CrossRef Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X.: Applied Logistic Regression. Wiley, New York (2013)CrossRef
56.
go back to reference Song, Y.Y.; Ying, L.U.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015) Song, Y.Y.; Ying, L.U.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015)
58.
go back to reference Qi, Y.: Random forest for bioinformatics. In: Ensemble Machine Learning, Springer, Boston, MA, pp. 307–323 (2012) Qi, Y.: Random forest for bioinformatics. In: Ensemble Machine Learning, Springer, Boston, MA, pp. 307–323 (2012)
59.
go back to reference Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 9(5), 272 (2012) Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I.: Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 9(5), 272 (2012)
60.
go back to reference Bozkurt, F., Altay, Ş.Y., Yağanoğlu, M.: Yapay Sinir Ağları ile Ankara İlinde Hava Kalitesi Sağlık İndeksi Tahmini. 2.Ulusal Yönetim Bilişim Sistemleri Kongresi. Erzurum, Türkiye, pp. 321–331 (in Turkish with an abstract in English) (2015) Bozkurt, F., Altay, Ş.Y., Yağanoğlu, M.: Yapay Sinir Ağları ile Ankara İlinde Hava Kalitesi Sağlık İndeksi Tahmini. 2.Ulusal Yönetim Bilişim Sistemleri Kongresi. Erzurum, Türkiye, pp. 321–331 (in Turkish with an abstract in English) (2015)
63.
go back to reference Zhang, L., Wu, X., Luo, D.: Human activity recognition with HMM-DNN model. In: IEEE/2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive Computing, Beijing, China, pp. 192–197 (2015) Zhang, L., Wu, X., Luo, D.: Human activity recognition with HMM-DNN model. In: IEEE/2015 IEEE 14th International Conference on Cognitive Informatics and Cognitive Computing, Beijing, China, pp. 192–197 (2015)
66.
go back to reference Singh, T.; Vishwakarma, D.K.: A deeply coupled ConvNet for human activity recognition using dynamic and RGB images. Neural Comput. Appl. 33(1), 469–485 (2021)CrossRef Singh, T.; Vishwakarma, D.K.: A deeply coupled ConvNet for human activity recognition using dynamic and RGB images. Neural Comput. Appl. 33(1), 469–485 (2021)CrossRef
67.
go back to reference Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: 2020 12th International Conference on Advanced Computational Intelligence (ICACI), pp. 486–491 (2020) Wang, S., Zhu, X.: A hybrid deep neural networks for sensor-based human activity recognition. In: 2020 12th International Conference on Advanced Computational Intelligence (ICACI), pp. 486–491 (2020)
68.
go back to reference Ronald, M., Poulose, A., Han, D. S.: iSPLInception: an inception-ResNet deep learning architecture for human activity recognition. IEEE Access (2021) Ronald, M., Poulose, A., Han, D. S.: iSPLInception: an inception-ResNet deep learning architecture for human activity recognition. IEEE Access (2021)
69.
go back to reference Kwapisz, J.R.; Weiss, G.M.; Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)CrossRef Kwapisz, J.R.; Weiss, G.M.; Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)CrossRef
70.
go back to reference Ragab, M. G., Abdulkadir, S. J., Aziz, N.: Random search one dimensional CNN for human activity recognition. In: IEEE In 2020 International Conference on Computational Intelligence, ICCI, pp. 86–91 (2020) Ragab, M. G., Abdulkadir, S. J., Aziz, N.: Random search one dimensional CNN for human activity recognition. In: IEEE In 2020 International Conference on Computational Intelligence, ICCI, pp. 86–91 (2020)
71.
go back to reference Bashar, S.K., Al Fahim, A., Chon, K.H.: Smartphone based human activity recognition with feature selection and dense neural network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5888–5891 (2020) Bashar, S.K., Al Fahim, A., Chon, K.H.: Smartphone based human activity recognition with feature selection and dense neural network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5888–5891 (2020)
72.
73.
go back to reference Shuvo, M.M.H., Ahmed, N., Nouduri, K., Palaniappan, K.: A Hybrid approach for human activity recognition with support vector machine and 1D convolutional neural network. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–5 (2020) Shuvo, M.M.H., Ahmed, N., Nouduri, K., Palaniappan, K.: A Hybrid approach for human activity recognition with support vector machine and 1D convolutional neural network. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–5 (2020)
Metadata
Title
A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods
Author
Ferhat Bozkurt
Publication date
26-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06008-5

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering and Computer Science

IARet: A Lightweight Multiscale Infrared Aerocraft Recognition Algorithm

Research Article-Computer Engineering and Computer Science

Credit Card Fraud Detection by Modelling Behaviour Pattern using Hybrid Ensemble Model

Research Article-Computer Engineering and Computer Science

Detection of Turkish Fake News in Twitter with Machine Learning Algorithms

Premium Partners