Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 13/2011

01-12-2011

A Comparison of Residual Stress Development in Inertia Friction Welded Fine Grain and Coarse Grain Nickel-Base Superalloy

Authors: N. Iqbal, J. Rolph, R. Moat, D. Hughes, M. Hofmann, J. Kelleher, G. Baxter, P. J. Withers, M. Preuss

Published in: Metallurgical and Materials Transactions A | Issue 13/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the base material microstructure on the development of residual stresses across the weld line in inertia friction welds (IFWs) of high-strength nickel-base superalloy RR1000 was studied using neutron diffraction. A comparison was carried out between tubular IFW specimens generated from RR1000 heat treated below (fine grain (FG) structure) and above (coarse grain (CG) structure) the γ′-solvus. Residual stresses were mapped in the as-welded (AW) condition and, after a postweld heat treatment (PWHT), optimized for maximum alloy strength. The highest tensile stresses were generally found in the hoop direction at the weld line near the inner diameter of the tubular-shaped specimens. A comparison between the residual stresses generated in FG and CG RR1000 suggests that the starting microstructure has little influence on the maximum residual stresses generated in the weld even though different levels of energy must be input to achieve a successful weld in each case. The residual stresses in the postweld heat treated samples were about 35 pct less than for the AW condition. Despite the fact that the high-temperature properties of the two parent microstructures are different, no significant differences in terms of stress relief were found between the FG and CG RR1000 IFWs. Since the actual weld microstructures of FG and CG RR1000 inertia welds are very similar, the results suggest that it is the weld microstructure and its associated high-temperature properties rather than the parent material that affects the overall weld stress distribution and its subsequent stress relief.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
INCONEL is a trademark of Special Metals Corporation, New Hartford, NY.
 
Literature
1.
go back to reference C.T. Sims and W.C. Hagel: The Superalloys, Wiley, New York, NY, 1972. C.T. Sims and W.C. Hagel: The Superalloys, Wiley, New York, NY, 1972.
2.
go back to reference R.F. Decker: Climax Symp., May 1969, Am. Mit. Climax Inc. R.F. Decker: Climax Symp., May 1969, Am. Mit. Climax Inc.
3.
go back to reference M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3215–25.CrossRef M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3215–25.CrossRef
4.
go back to reference M.C. Hardy, B. Zirbel, G. Shen, and R. Shankar: Superalloy 2004, K.A. Green, T.M. Pollock, H. Harada, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, pp. 83–90. M.C. Hardy, B. Zirbel, G. Shen, and R. Shankar: Superalloy 2004, K.A. Green, T.M. Pollock, H. Harada, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, pp. 83–90.
5.
go back to reference B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 366–75. B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 366–75.
6.
go back to reference J.W.L. Pang, M. Preuss, P.J. Withers, G.J. Baxter, and C. Small: Mater. Sci. Eng. A, 2003, vol. 356 (1–2), pp. 405–13. J.W.L. Pang, M. Preuss, P.J. Withers, G.J. Baxter, and C. Small: Mater. Sci. Eng. A, 2003, vol. 356 (1–2), pp. 405–13.
7.
go back to reference M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3227–34.CrossRef M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3227–34.CrossRef
8.
go back to reference P.J. Withers and M. Preuss: ASM Handbook, vol. 22B, Modeling and Simulation: Processing of Metallic Materials, D.U. Furrer and S.L. Semiatin, eds., ASM INTERNATIONAL, Materials Park, OH, 2010. P.J. Withers and M. Preuss: ASM Handbook, vol. 22B, Modeling and Simulation: Processing of Metallic Materials, D.U. Furrer and S.L. Semiatin, eds., ASM INTERNATIONAL, Materials Park, OH, 2010.
9.
go back to reference B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 366–75. B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 366–75.
10.
go back to reference M. Preuss, P.J. Withers, and G. Baxter: Mater. Sci. Eng. A, 2006, vol. 437 (1), pp. 38–45.CrossRef M. Preuss, P.J. Withers, and G. Baxter: Mater. Sci. Eng. A, 2006, vol. 437 (1), pp. 38–45.CrossRef
11.
go back to reference R.J. Mitchell, J.A. Lemsky, R. Ramanathan, H.Y. Li, K.M. Perkins, and L.D. Connor: Superalloy 2008, R. Reed et al., eds., TMS, Warrendale, pp. 347–56. R.J. Mitchell, J.A. Lemsky, R. Ramanathan, H.Y. Li, K.M. Perkins, and L.D. Connor: Superalloy 2008, R. Reed et al., eds., TMS, Warrendale, pp. 347–56.
12.
go back to reference M.T. Hutchings, P.J. Withers, T.M. Holden, and Torben Lorentzen: Introduction to Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, FL, 2005. M.T. Hutchings, P.J. Withers, T.M. Holden, and Torben Lorentzen: Introduction to Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, FL, 2005.
13.
go back to reference P.J. Withers, M. Preuss, A. Steuwer, and J.W.L. Pang: J. Appl. Crystallogr., 2007, vol. 40, Part 5, pp. 891–904.CrossRef P.J. Withers, M. Preuss, A. Steuwer, and J.W.L. Pang: J. Appl. Crystallogr., 2007, vol. 40, Part 5, pp. 891–904.CrossRef
14.
go back to reference M.W. Johnson, L. Edwards, and P.J. Withers: Physica B, 1997, vol. 234, pp. 1141–43.CrossRef M.W. Johnson, L. Edwards, and P.J. Withers: Physica B, 1997, vol. 234, pp. 1141–43.CrossRef
15.
go back to reference I.C. Noyan and J.B. Cohen: Residual Stress, Springer Verlag, New York, NY, 1987, p. 111. I.C. Noyan and J.B. Cohen: Residual Stress, Springer Verlag, New York, NY, 1987, p. 111.
16.
go back to reference T. Pirling, G. Bruno, and P.J. Withers: Mater. Sci. Eng. A, 2006, vol. 437, pp. 139–44.CrossRef T. Pirling, G. Bruno, and P.J. Withers: Mater. Sci. Eng. A, 2006, vol. 437, pp. 139–44.CrossRef
17.
go back to reference J.A. Dann, M.R. Daymond, L. Edwards, J.A. James, and J.R. Santisteban: Physica B, 2004, vol. 350, pp. 511–14.CrossRef J.A. Dann, M.R. Daymond, L. Edwards, J.A. James, and J.R. Santisteban: Physica B, 2004, vol. 350, pp. 511–14.CrossRef
18.
go back to reference M. Hofmann, R. Schneider, G.A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U. Garbe, and H.G. Brokmeier: Physica B, 2006, vols. 385–386, p. 1035.CrossRef M. Hofmann, R. Schneider, G.A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U. Garbe, and H.G. Brokmeier: Physica B, 2006, vols. 385–386, p. 1035.CrossRef
19.
go back to reference M. Karadge, B. Grant, G. Bruno, J. Santisteban, P.J. Withers, and M. Preuss: Mater. Sci. Forum, 2006, vols. 524–525, pp. 393–98.CrossRef M. Karadge, B. Grant, G. Bruno, J. Santisteban, P.J. Withers, and M. Preuss: Mater. Sci. Forum, 2006, vols. 524–525, pp. 393–98.CrossRef
20.
go back to reference R. Hill: The Mathematical Theory of Plasticity, Oxford Classic Series, Clarendon Press, Oxford, United Kingdom, 1998, p. 26. R. Hill: The Mathematical Theory of Plasticity, Oxford Classic Series, Clarendon Press, Oxford, United Kingdom, 1998, p. 26.
21.
go back to reference R.A. Claudio, J.M. Silva, C.M. Branco, and J. Byrne: “Crack Propagation Behaviour of Shot Peened Components at Elevated Temperature,” 10 as Jornadas de Fractura, Univ. do Minho, Portugal, Fevereiro 2006 (available at http://ltodi.est.ips.pt/rclaudio/). R.A. Claudio, J.M. Silva, C.M. Branco, and J. Byrne: “Crack Propagation Behaviour of Shot Peened Components at Elevated Temperature,” 10 as Jornadas de Fractura, Univ. do Minho, Portugal, Fevereiro 2006 (available at http://​ltodi.​est.​ips.​pt/​rclaudio/​).
Metadata
Title
A Comparison of Residual Stress Development in Inertia Friction Welded Fine Grain and Coarse Grain Nickel-Base Superalloy
Authors
N. Iqbal
J. Rolph
R. Moat
D. Hughes
M. Hofmann
J. Kelleher
G. Baxter
P. J. Withers
M. Preuss
Publication date
01-12-2011
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 13/2011
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0802-0

Other articles of this Issue 13/2011

Metallurgical and Materials Transactions A 13/2011 Go to the issue

Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Multiscale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand Nanocomposites

Premium Partners