Skip to main content
Top
Published in: Wireless Networks 2/2021

26-11-2020

A comprehensive review of cooperative MIMO WSN: its challenges and the emerging technologies

Authors: Sarah Asheer, Sanjeet Kumar

Published in: Wireless Networks | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The distributed nodes of a Wireless Sensor Network (WSN) cooperate among themselves to emulate a virtual multi-antenna system to get similar benefits as the conventional MIMO systems. In WSN, such a system is known as the Cooperative Multiple Input Multiple Output (CMIMO) system. A CMIMO system has an enormous capacity to improve the performance of a WSN. But the increasing demand in the data rate and the desired Quality of Services (QoS), necessitates a revival in the way CMIMO was originally perceived in the early 1990s. Therefore, this article identifies several emerging supportive technologies such as the Compressive Sensing (CS), Simultaneous Wireless Information and Power Transfer (SWIPT), over the air computation, etc. which can be integrated to the CMIMO framework for enhancing the network performance in terms of throughput, delay, Energy Efficiency (EE), etc. The inclusion of these novel ideas necessitates further exploration of CMIMO in WSN along with its associated challenges and their possible solutions. This article provides a comprehensive overview of a CMIMO WSN along with its challenges which have been classified based on the layers of the protocol stack. Since energy efficiency is a key concern in a WSN having scarce energy resources, the energy-saving techniques have been discussed in detail. Further, challenges and open issues have also been highlighted which opens up new research direction in the area.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nguyen, D. N., & Krunz, M. (2013). Cooperative MIMO in wireless networks: Recent developments and challenges. IEEE Network, 27(4), 48–54. Nguyen, D. N., & Krunz, M. (2013). Cooperative MIMO in wireless networks: Recent developments and challenges. IEEE Network, 27(4), 48–54.
2.
go back to reference Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121. Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121.
3.
go back to reference Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.
4.
go back to reference Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.
5.
go back to reference Gao, Z., Dai, L., Han, S., Chih-Lin, I., Wang, Z., & Hanzo, L. (2018). Compressive sensing techniques for next-generation wireless communication. IEEE Wireless Communications, 25(3), 144–153. Gao, Z., Dai, L., Han, S., Chih-Lin, I., Wang, Z., & Hanzo, L. (2018). Compressive sensing techniques for next-generation wireless communication. IEEE Wireless Communications, 25(3), 144–153.
6.
go back to reference Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO–NOMA and MIMO–OMA with multiple users in a cluster. IEEE Journal on Selected Areas in Communications, 35(10), 2413–2424. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO–NOMA and MIMO–OMA with multiple users in a cluster. IEEE Journal on Selected Areas in Communications, 35(10), 2413–2424.
7.
go back to reference Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.
8.
go back to reference Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53. Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.
9.
go back to reference Foschini, G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59. Foschini, G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.
10.
go back to reference Wolniansky, P.W., Foschini, G.J., Golden, G.D., & Valenzuela, R.A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In 1998 URSI international symposium on signals, systems, and electronics. Conference proceedings (pp. 295–300) Cat. No. 98EX167, IEEE. Wolniansky, P.W., Foschini, G.J., Golden, G.D., & Valenzuela, R.A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In 1998 URSI international symposium on signals, systems, and electronics. Conference proceedings (pp. 295–300) Cat. No. 98EX167, IEEE.
11.
go back to reference Stankovic, V., Host-Madsen, A., & Xiong, Z. (2006). Cooperative diversity for wireless ad hoc networks. IEEE Signal Processing Magazine, 23(5), 37–49. Stankovic, V., Host-Madsen, A., & Xiong, Z. (2006). Cooperative diversity for wireless ad hoc networks. IEEE Signal Processing Magazine, 23(5), 37–49.
12.
go back to reference Paulraj, A., Rohit, A. P., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. Cambridge: Cambridge University Press. Paulraj, A., Rohit, A. P., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. Cambridge: Cambridge University Press.
13.
go back to reference Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). Hoboken: Wiley. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). Hoboken: Wiley.
14.
go back to reference Rappaport, T. S. (2002). Wireless communications–principles and practice. Microwave Journal, 45(12), 128–129. Rappaport, T. S. (2002). Wireless communications–principles and practice. Microwave Journal, 45(12), 128–129.
15.
go back to reference Jafarkhani, H., Yousefi’zadeh, H. & Kazemitabar, J. (2005). Capacity-based connectivity of MIMO fading ad-hoc networks. In GLOBECOM’05. IEEE global telecommunications conference (Vol. 5). Jafarkhani, H., Yousefi’zadeh, H. & Kazemitabar, J. (2005). Capacity-based connectivity of MIMO fading ad-hoc networks. In GLOBECOM’05. IEEE global telecommunications conference (Vol. 5).
16.
go back to reference Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63. Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63.
17.
go back to reference Incel, O.D. & Krishnamachari, B. (2008). Enhancing the data collection rate of tree-based aggregation in wireless sensor networks. In 2008 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 569–577). IEEE. Incel, O.D. & Krishnamachari, B. (2008). Enhancing the data collection rate of tree-based aggregation in wireless sensor networks. In 2008 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 569–577). IEEE.
18.
go back to reference Gao, Q., Zuo, Y., Zhang, J., & Peng, X. H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Technology, 59(8), 3956–3965. Gao, Q., Zuo, Y., Zhang, J., & Peng, X. H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Technology, 59(8), 3956–3965.
19.
go back to reference Asheer, S., & Kumar, S. (2020). Lifetime enhancement of a WSN through duty cycle in an aggregation based cooperative MIMO framework. Wireless Personal Communications (pp. 1–26). Asheer, S., & Kumar, S. (2020). Lifetime enhancement of a WSN through duty cycle in an aggregation based cooperative MIMO framework. Wireless Personal Communications (pp. 1–26).
20.
go back to reference Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions Information Theory, 50(12), 3062–3080.MathSciNetMATH Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions Information Theory, 50(12), 3062–3080.MathSciNetMATH
21.
go back to reference Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.
22.
go back to reference Patel, A., Ram, H., Jagannatham, A. K., & Varshney, P. K. (2017). Robust cooperative spectrum sensing for MIMO cognitive radio networks under CSI uncertainty. IEEE Transactions on Signal Processing, 66(1), 18–33.MathSciNetMATH Patel, A., Ram, H., Jagannatham, A. K., & Varshney, P. K. (2017). Robust cooperative spectrum sensing for MIMO cognitive radio networks under CSI uncertainty. IEEE Transactions on Signal Processing, 66(1), 18–33.MathSciNetMATH
23.
go back to reference Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access, 5, 12318–12337. Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access, 5, 12318–12337.
24.
go back to reference Chen, K., & Natarajan, B. B. (2016). Evaluating node reliability in cooperative MIMO networks. IEEE Transactions on Information Forensics and Security, 11(7), 1453–1460. Chen, K., & Natarajan, B. B. (2016). Evaluating node reliability in cooperative MIMO networks. IEEE Transactions on Information Forensics and Security, 11(7), 1453–1460.
25.
go back to reference Chen, K., & Natarajan, B. (2014). Mimo-based secret key generation strategies: Rate analysis. International Journal of Mobile Computing and Multimedia Communications, 6(3), 22–55. Chen, K., & Natarajan, B. (2014). Mimo-based secret key generation strategies: Rate analysis. International Journal of Mobile Computing and Multimedia Communications, 6(3), 22–55.
26.
go back to reference Gembali, S.K. & Jagannatham, A.K. (2015). Optimal MIMO beamforming based topology management for interference minimization in MIMO wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1470–1475). Gembali, S.K. & Jagannatham, A.K. (2015). Optimal MIMO beamforming based topology management for interference minimization in MIMO wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1470–1475).
27.
go back to reference Wu, J., Lin, D., Li, G., Liu, Y., & Yin, Y. (2019). Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks. Wireless Communications and Mobile Computing. Wu, J., Lin, D., Li, G., Liu, Y., & Yin, Y. (2019). Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks. Wireless Communications and Mobile Computing.
28.
go back to reference Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). On the sum rate of MIMO–NOMA and MIMO–OMA systems. IEEE Wireless Communications Letters, 6(4), 534–537. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). On the sum rate of MIMO–NOMA and MIMO–OMA systems. IEEE Wireless Communications Letters, 6(4), 534–537.
29.
go back to reference Wang, J., Zhu, H., Gomes, N. J., & Wang, J. (2018). Frequency reuse of beam allocation for multiuser massive MIMO systems. IEEE Transactions on Wireless Communications, 17(4), 2346–2359. Wang, J., Zhu, H., Gomes, N. J., & Wang, J. (2018). Frequency reuse of beam allocation for multiuser massive MIMO systems. IEEE Transactions on Wireless Communications, 17(4), 2346–2359.
30.
go back to reference Dey, I., Butt, M. M., & Marchetti, N. (2018). Throughput analysis for virtual MIMO WSNs over measured MIMO channels. IEEE Transactions on Instrumentation and Measurement, 68(1), 297–299. Dey, I., Butt, M. M., & Marchetti, N. (2018). Throughput analysis for virtual MIMO WSNs over measured MIMO channels. IEEE Transactions on Instrumentation and Measurement, 68(1), 297–299.
31.
go back to reference Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594. Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594.
32.
go back to reference Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419–1437. Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419–1437.
33.
go back to reference Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117–134. Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117–134.
34.
go back to reference Peng, Y., Al-Hazemi, F., Kim, H., & Youn, C. H. (2016). Design and optimization for energy-efficient cooperative MIMO transmission in ad hoc networks. IEEE Transactions on Vehicular Technology, 66(1), 710–719. Peng, Y., Al-Hazemi, F., Kim, H., & Youn, C. H. (2016). Design and optimization for energy-efficient cooperative MIMO transmission in ad hoc networks. IEEE Transactions on Vehicular Technology, 66(1), 710–719.
35.
go back to reference Peng, Y., Li, J., Park, S., Zhu, K., Hassan, M. M., & Alsanad, A. (2019). Energy-efficient cooperative transmission for intelligent transportation systems. Future Generation Computer Systems, 94, 634–640. Peng, Y., Li, J., Park, S., Zhu, K., Hassan, M. M., & Alsanad, A. (2019). Energy-efficient cooperative transmission for intelligent transportation systems. Future Generation Computer Systems, 94, 634–640.
36.
go back to reference Jin, X., Yang, L., Jin, N., & Chen, D. (2019). Performance analysis of a wireless energy-harvesting cooperative system with precoding spatial modulation. IET Communications, 13(15), 2369–2374. Jin, X., Yang, L., Jin, N., & Chen, D. (2019). Performance analysis of a wireless energy-harvesting cooperative system with precoding spatial modulation. IET Communications, 13(15), 2369–2374.
37.
go back to reference Pehlke, D. R., & Walsh, K. (2017). LTE-advanced pro RF front-end implementations to meet emerging carrier aggregation and DL MIMO requirements. IEEE Communications Magazine, 55(4), 134–141. Pehlke, D. R., & Walsh, K. (2017). LTE-advanced pro RF front-end implementations to meet emerging carrier aggregation and DL MIMO requirements. IEEE Communications Magazine, 55(4), 134–141.
38.
go back to reference Rafique, Z., Seet, B. C., & Al-Anbuky, A. (2013). Performance analysis of cooperative virtual MIMO systems for wireless sensor networks. Sensors, 13(6), 7033–7052. Rafique, Z., Seet, B. C., & Al-Anbuky, A. (2013). Performance analysis of cooperative virtual MIMO systems for wireless sensor networks. Sensors, 13(6), 7033–7052.
39.
go back to reference Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2013). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103. Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2013). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.
40.
go back to reference Feng, Z., & Wassell, I. (2016). Dynamic power control and optimization scheme for QoS-constrained cooperative wireless sensor networks. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). Feng, Z., & Wassell, I. (2016). Dynamic power control and optimization scheme for QoS-constrained cooperative wireless sensor networks. In 2016 IEEE international conference on communications (ICC) (pp. 1–6).
41.
go back to reference Li, S., Da Xu, L., & Wang, X. (2012). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186. Li, S., Da Xu, L., & Wang, X. (2012). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.
42.
go back to reference Peng, Y., & Youn, C. H. (2015). An energy-efficient cooperative MIMO transmission with data compression in wireless sensor networks. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 729–730. Peng, Y., & Youn, C. H. (2015). An energy-efficient cooperative MIMO transmission with data compression in wireless sensor networks. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 729–730.
43.
go back to reference Kafetzoglou, S., & Papavassiliou, S. (2011). Energy-efficient framework for data gathering in wireless sensor networks via the combination of sleeping MAC and data aggregation strategies. International Journal of Sensor Networks, 10(1–2), 3–13. Kafetzoglou, S., & Papavassiliou, S. (2011). Energy-efficient framework for data gathering in wireless sensor networks via the combination of sleeping MAC and data aggregation strategies. International Journal of Sensor Networks, 10(1–2), 3–13.
44.
go back to reference Liu, G., Huang, L., Xu, H., Xu, X., & Wang, Y. (2013). Energy–efficient tree-based cooperative data aggregation for wireless sensor networks. International Journal of Sensor Networks, 13(2), 65–75. Liu, G., Huang, L., Xu, H., Xu, X., & Wang, Y. (2013). Energy–efficient tree-based cooperative data aggregation for wireless sensor networks. International Journal of Sensor Networks, 13(2), 65–75.
45.
go back to reference Gong, D., Zhao, M., & Yang, Y. (2014). A multi-channel cooperative MIMO MAC protocol for clustered wireless sensor networks. Journal of Parallel and Distributed Computing, 74(11), 3098–3114. Gong, D., Zhao, M., & Yang, Y. (2014). A multi-channel cooperative MIMO MAC protocol for clustered wireless sensor networks. Journal of Parallel and Distributed Computing, 74(11), 3098–3114.
46.
go back to reference Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings. twenty-first annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1567–1576). Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings. twenty-first annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1567–1576).
47.
go back to reference Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419-1437. Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419-1437.
48.
go back to reference Peron, G., Brante, G., Souza, R. D., & Pellenz, M. E. (2018). Physical and MAC cross-layer analysis of energy-efficient cooperative MIMO networks. IEEE Transactions on Communications, 66(5), 1940–1954. Peron, G., Brante, G., Souza, R. D., & Pellenz, M. E. (2018). Physical and MAC cross-layer analysis of energy-efficient cooperative MIMO networks. IEEE Transactions on Communications, 66(5), 1940–1954.
49.
go back to reference Liu, W., Li, X., & Chen, M. (2005). Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. In Proceedings.(ICASSP’05). IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. iv–897). Liu, W., Li, X., & Chen, M. (2005). Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. In Proceedings.(ICASSP’05). IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. iv–897).
50.
go back to reference Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.
51.
go back to reference Ayatollahi, H., Tapparello, C., & Heinzelman, W. (2019). MAC-LEAP: Multi-antenna, cross layer, energy adaptive protocol. Ad Hoc Networks, 83, 91–110. Ayatollahi, H., Tapparello, C., & Heinzelman, W. (2019). MAC-LEAP: Multi-antenna, cross layer, energy adaptive protocol. Ad Hoc Networks, 83, 91–110.
52.
go back to reference Chung, J. M., Kim, J., & Han, D. (2012). Multihop hybrid virtual MIMO scheme for wireless sensor networks. IEEE Transactions on Vehicular Technology, 61(9), 4069–4078. Chung, J. M., Kim, J., & Han, D. (2012). Multihop hybrid virtual MIMO scheme for wireless sensor networks. IEEE Transactions on Vehicular Technology, 61(9), 4069–4078.
53.
go back to reference Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772. Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.
54.
go back to reference Choi, Y.S., Molisch, A.F., Win, M.Z., & Winters, J.H. (2003). Fast algorithms for antenna selection in MIMO systems. In 2003 IEEE 58th vehicular technology conference (Vol. 3, pp. 1733–1737). Choi, Y.S., Molisch, A.F., Win, M.Z., & Winters, J.H. (2003). Fast algorithms for antenna selection in MIMO systems. In 2003 IEEE 58th vehicular technology conference (Vol. 3, pp. 1733–1737).
55.
go back to reference Sandhu, S., Nabar, R.U., Gore, D.A., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Conference record of the thirty-fourth asilomar conference on signals, systems and computers (Vol. 1, pp. 567–571). Sandhu, S., Nabar, R.U., Gore, D.A., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Conference record of the thirty-fourth asilomar conference on signals, systems and computers (Vol. 1, pp. 567–571).
56.
go back to reference Zhou, Z., Zhou, S., Cui, S., & Cui, J. H. (2008). Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Transactions on Vehicular Technology, 57(6), 3618–3628. Zhou, Z., Zhou, S., Cui, S., & Cui, J. H. (2008). Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Transactions on Vehicular Technology, 57(6), 3618–3628.
57.
go back to reference Alam, M. Z., Adhicandra, I., & Jamalipour, A. (2019). Optimal best path selection algorithm for cluster-based multi-hop MIMO cooperative transmission for vehicular communications. IEEE Transactions on Vehicular Technology, 68(9), 8314–8321. Alam, M. Z., Adhicandra, I., & Jamalipour, A. (2019). Optimal best path selection algorithm for cluster-based multi-hop MIMO cooperative transmission for vehicular communications. IEEE Transactions on Vehicular Technology, 68(9), 8314–8321.
58.
go back to reference Gao, Y., Kang, G., & Cheng, J. (2019). An opportunistic cooperative packet transmission scheme in wireless multi-hop networks. Sensors, 19(21), 4821. Gao, Y., Kang, G., & Cheng, J. (2019). An opportunistic cooperative packet transmission scheme in wireless multi-hop networks. Sensors, 19(21), 4821.
59.
go back to reference Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading. Wireless Networks, 26(3), 2075–2087. Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading. Wireless Networks, 26(3), 2075–2087.
60.
go back to reference Wang, X., Nan, Z., & Chen, T. (2015). Optimal MIMO broadcasting for energy harvesting transmitter with non-ideal circuit power consumption. IEEE Transactions on Wireless Communications, 14(5), 2500–2512. Wang, X., Nan, Z., & Chen, T. (2015). Optimal MIMO broadcasting for energy harvesting transmitter with non-ideal circuit power consumption. IEEE Transactions on Wireless Communications, 14(5), 2500–2512.
61.
go back to reference Bannour, A., Sacchi, C., & Sun, Y. (2017). MIMO-OFDM based energy harvesting cooperative communications using coalitional game algorithm. IEEE Transactions on Vehicular Technology, 66(12), 11166–11179. Bannour, A., Sacchi, C., & Sun, Y. (2017). MIMO-OFDM based energy harvesting cooperative communications using coalitional game algorithm. IEEE Transactions on Vehicular Technology, 66(12), 11166–11179.
62.
go back to reference Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.
63.
go back to reference Varshney, L.R. (2008). Transporting information and energy simultaneously. In 2008 IEEE international symposium on information theory (pp. 1612–1616). Varshney, L.R. (2008). Transporting information and energy simultaneously. In 2008 IEEE international symposium on information theory (pp. 1612–1616).
64.
go back to reference Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory (pp. 2363–2367). Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory (pp. 2363–2367).
65.
go back to reference Jadidian, J., & Katabi, D. (2014). Magnetic MIMO: How to charge your phone in your pocket. In Proceedings of the 20th annual international conference on Mobile computing and networking (pp. 495–506). Jadidian, J., & Katabi, D. (2014). Magnetic MIMO: How to charge your phone in your pocket. In Proceedings of the 20th annual international conference on Mobile computing and networking (pp. 495–506).
66.
go back to reference He, C., Sheng, B., Zhu, P., & You, X. (2012). Energy efficiency and spectral efficiency trade off in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156. He, C., Sheng, B., Zhu, P., & You, X. (2012). Energy efficiency and spectral efficiency trade off in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.
67.
go back to reference Hong, X., Wang, J., Wang, C. X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53. Hong, X., Wang, J., Wang, C. X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53.
68.
go back to reference Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2015). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705. Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2015). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.
69.
go back to reference Huang, J., & Swindlehurst, A. L. (2011). Cooperative jamming for secure communications in MIMO relay networks. IEEE Transactions on Signal Processing, 59(10), 4871–4884.MathSciNetMATH Huang, J., & Swindlehurst, A. L. (2011). Cooperative jamming for secure communications in MIMO relay networks. IEEE Transactions on Signal Processing, 59(10), 4871–4884.MathSciNetMATH
70.
go back to reference Zhang, H., Xing, H., Cheng, J., Nallanathan, A., & Leung, V. C. (2015). Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Transactions on Industrial Informatics, 12(5), 1714–1725. Zhang, H., Xing, H., Cheng, J., Nallanathan, A., & Leung, V. C. (2015). Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Transactions on Industrial Informatics, 12(5), 1714–1725.
71.
go back to reference Hong, L., McNeal, M., & Chen, W. (2011). Secure cooperative MIMO communications under active compromised nodes. In 2011 IEEE international conference on pervasive computing and communications workshops PERCOM workshops (pp. 184–189). Hong, L., McNeal, M., & Chen, W. (2011). Secure cooperative MIMO communications under active compromised nodes. In 2011 IEEE international conference on pervasive computing and communications workshops PERCOM workshops (pp. 184–189).
72.
go back to reference Kim, T. K., Choi, W., & Im, G. H. (2016). Efficient codebook design for co-operative MIMO systems with decode-and-forward relay. IEEE Communications Letters, 20(3), 598–601. Kim, T. K., Choi, W., & Im, G. H. (2016). Efficient codebook design for co-operative MIMO systems with decode-and-forward relay. IEEE Communications Letters, 20(3), 598–601.
73.
go back to reference Li, B., Yang, J., Yang, H., Liu, G., Ma, R., & Peng, X. (2019). Decode-and-forward cooperative transmission in wireless sensor networks based on physical-layer network coding. Wireless Networks, 6, 1–7. Li, B., Yang, J., Yang, H., Liu, G., Ma, R., & Peng, X. (2019). Decode-and-forward cooperative transmission in wireless sensor networks based on physical-layer network coding. Wireless Networks, 6, 1–7.
74.
go back to reference Oggier, F., & Hassibi, B. (2011). The secrecy capacity of the MIMO wiretap channel. IEEE Transactions on Information Theory, 57(8), 4961–4972.MathSciNetMATH Oggier, F., & Hassibi, B. (2011). The secrecy capacity of the MIMO wiretap channel. IEEE Transactions on Information Theory, 57(8), 4961–4972.MathSciNetMATH
75.
go back to reference Huang, S., Zhu, L., & Liu, S. (2018). Based on virtual beamforming cooperative jamming with Stackelberg game for physical layer security in the heterogeneous wireless network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–11. Huang, S., Zhu, L., & Liu, S. (2018). Based on virtual beamforming cooperative jamming with Stackelberg game for physical layer security in the heterogeneous wireless network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–11.
76.
go back to reference Zhu, F., Gao, F., Lin, H., Jin, S., Zhao, J., & Qian, G. (2018). Robust beamforming for physical layer security in BDMA massive MIMO. IEEE Journal on Selected Areas in Communications, 36(4), 775–787. Zhu, F., Gao, F., Lin, H., Jin, S., Zhao, J., & Qian, G. (2018). Robust beamforming for physical layer security in BDMA massive MIMO. IEEE Journal on Selected Areas in Communications, 36(4), 775–787.
77.
go back to reference Zhao, R., Lin, H., He, Y. C., Chen, D. H., Huang, Y., & Yang, L. (2017). Secrecy performance of transmit antenna selection for MIMO relay systems with outdated CSI. IEEE Transactions on Communications, 66(2), 546–559. Zhao, R., Lin, H., He, Y. C., Chen, D. H., Huang, Y., & Yang, L. (2017). Secrecy performance of transmit antenna selection for MIMO relay systems with outdated CSI. IEEE Transactions on Communications, 66(2), 546–559.
78.
go back to reference He, D., Liu, C., Quek, T. Q., & Wang, H. (2018). Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wireless Communications Letters, 7(4), 634–637. He, D., Liu, C., Quek, T. Q., & Wang, H. (2018). Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wireless Communications Letters, 7(4), 634–637.
79.
go back to reference Zhu, J., Zou, Y., Wang, G., Yao, Y. D., & Karagiannidis, G. K. (2015). On secrecy performance of antenna-selection-aided MIMO systems against eavesdropping. IEEE Transactions on Vehicular Technology, 65(1), 214–225. Zhu, J., Zou, Y., Wang, G., Yao, Y. D., & Karagiannidis, G. K. (2015). On secrecy performance of antenna-selection-aided MIMO systems against eavesdropping. IEEE Transactions on Vehicular Technology, 65(1), 214–225.
80.
go back to reference Timilsina, S., & Amarasuriya, G. (2017). Secure communication in relay-assisted massive MIMO downlink. In: IEEE global communications conference (pp. 1–7). Timilsina, S., & Amarasuriya, G. (2017). Secure communication in relay-assisted massive MIMO downlink. In: IEEE global communications conference (pp. 1–7).
81.
go back to reference Chen, W., Hong, L., Shetty, S., Lo, D., & Cooper, R. (2016). Cross-layered security approach with compromised nodes detection in cooperative sensor networks. In 2016 ieee international parallel and distributed processing symposium workshops (IPDPSW) (pp. 499–508). IEEE. Chen, W., Hong, L., Shetty, S., Lo, D., & Cooper, R. (2016). Cross-layered security approach with compromised nodes detection in cooperative sensor networks. In 2016 ieee international parallel and distributed processing symposium workshops (IPDPSW) (pp. 499–508). IEEE.
82.
go back to reference Hong, L., & Chen, W. (2014). Information theory and cryptography based secured communication scheme for cooperative MIMO communication in wireless sensor networks. Ad Hoc Networks, 14, 95–105. Hong, L., & Chen, W. (2014). Information theory and cryptography based secured communication scheme for cooperative MIMO communication in wireless sensor networks. Ad Hoc Networks, 14, 95–105.
83.
go back to reference Bocherer, G., & Mathar, R. (2010). On the throughput/bit-cost tradeoff in CSMA based cooperative networks. In Proceedings of the 2010 international ITG conference on source and channel coding. Bocherer, G., & Mathar, R. (2010). On the throughput/bit-cost tradeoff in CSMA based cooperative networks. In Proceedings of the 2010 international ITG conference on source and channel coding.
84.
go back to reference Chen, Y., Yu, G., Qiu, P., & Zhang, Z. (2006). Power-aware cooperative relay selection strategiesin wireless ad hoc networks. In Proceedings of the IEEE 17th international symposium on personal, indoor and mobile radio communications. Chen, Y., Yu, G., Qiu, P., & Zhang, Z. (2006). Power-aware cooperative relay selection strategiesin wireless ad hoc networks. In Proceedings of the IEEE 17th international symposium on personal, indoor and mobile radio communications.
85.
go back to reference Gharavi, H., Hu, B., & Wu. N. (2010). A design framework for high-density wireless ad-hoc networks achieving cooperative diversity. In Proceedings of the 2010 IEEE International Conference on Communications (ICC). Gharavi, H., Hu, B., & Wu. N. (2010). A design framework for high-density wireless ad-hoc networks achieving cooperative diversity. In Proceedings of the 2010 IEEE International Conference on Communications (ICC).
86.
go back to reference Sinha, A. & Pandey, A.K., (2017). An energy-efficient MAC protocol for virtual MIMO communications in WSNs. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1419–1423). Sinha, A. & Pandey, A.K., (2017). An energy-efficient MAC protocol for virtual MIMO communications in WSNs. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1419–1423).
87.
go back to reference Yang, H., Shen, H.Y., Sikdar, B., & Kalyanaraman, S. (2009). A threshold based MAC protocol for cooperative MIMO transmissions. (pp. 2996–3000). Yang, H., Shen, H.Y., Sikdar, B., & Kalyanaraman, S. (2009). A threshold based MAC protocol for cooperative MIMO transmissions. (pp. 2996–3000).
88.
go back to reference Sami, M., Noordin, N. K., Khabazian, M., Hashim, F., & Subramaniam, S. (2016). A survey and taxonomy on medium access control strategies for cooperative communication in wireless networks: Research issues and challenges. IEEE Communications Surveys & Tutorials, 18(4), 2493–2521. Sami, M., Noordin, N. K., Khabazian, M., Hashim, F., & Subramaniam, S. (2016). A survey and taxonomy on medium access control strategies for cooperative communication in wireless networks: Research issues and challenges. IEEE Communications Surveys & Tutorials, 18(4), 2493–2521.
89.
go back to reference Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2017). A survey on cooperative MAC protocols in IEEE 802.11 wireless networks. Wireless Personal Communications, 95(2), 1469–1493. Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2017). A survey on cooperative MAC protocols in IEEE 802.11 wireless networks. Wireless Personal Communications, 95(2), 1469–1493.
90.
go back to reference Akande, D. O., Salleh, M. F. M., & Ojo, F. K. (2018). MAC protocol for cooperative networks, design challenges, and implementations: A survey. Telecommunication Systems, 69(1), 95–111. Akande, D. O., Salleh, M. F. M., & Ojo, F. K. (2018). MAC protocol for cooperative networks, design challenges, and implementations: A survey. Telecommunication Systems, 69(1), 95–111.
91.
go back to reference Khan, R. A. M., & Karl, H. (2013). MAC protocols for cooperative diversity in wireless LANs and wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 46–63. Khan, R. A. M., & Karl, H. (2013). MAC protocols for cooperative diversity in wireless LANs and wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 46–63.
92.
go back to reference Xu, H., Huang, L., Qiao, C., Dai, W., & Sun, Y. E. (2014). Joint virtual MIMO and data gathering for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1034–1048. Xu, H., Huang, L., Qiao, C., Dai, W., & Sun, Y. E. (2014). Joint virtual MIMO and data gathering for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1034–1048.
93.
go back to reference Li, X., Tao, X., & Li, N. (2016). Energy-efficient cooperative MIMO-based random walk routing for wireless sensor networks. IEEE Communications Letters, 20(11), 2280–2283. Li, X., Tao, X., & Li, N. (2016). Energy-efficient cooperative MIMO-based random walk routing for wireless sensor networks. IEEE Communications Letters, 20(11), 2280–2283.
94.
go back to reference Zhang, J., Zhang, D., Xie, K., Qiao, H., & He, S. (2017). A VMIMO-based cooperative routing algorithm for maximizing network lifetime. China Communications, 14(4), 20–34. Zhang, J., Zhang, D., Xie, K., Qiao, H., & He, S. (2017). A VMIMO-based cooperative routing algorithm for maximizing network lifetime. China Communications, 14(4), 20–34.
95.
go back to reference Sun, W., Huang, L., Zhang, H., & Xu, H. (2016). Energy-aware virtual multi-input-multi-output-based routing for wireless ad hoc networks. Wireless Communications and Mobile Computing, 16(7), 810–824. Sun, W., Huang, L., Zhang, H., & Xu, H. (2016). Energy-aware virtual multi-input-multi-output-based routing for wireless ad hoc networks. Wireless Communications and Mobile Computing, 16(7), 810–824.
96.
go back to reference Chen, W., Yuan, Y., et al. (2005). Virtual MIMO protocol based on clustering for wireless sensor network. In Proceedings 10th IEEE international symposium computers and communications (pp. 335–340) Murcia, Spain. Chen, W., Yuan, Y., et al. (2005). Virtual MIMO protocol based on clustering for wireless sensor network. In Proceedings 10th IEEE international symposium computers and communications (pp. 335–340) Murcia, Spain.
97.
go back to reference Xiong, Z., Chen, W., & Cao, W. (2011). An energy-efficient clusterbased cooperative MIMO scheme using network coding. In 7th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–5) IEEE, Wuhan, China. Xiong, Z., Chen, W., & Cao, W. (2011). An energy-efficient clusterbased cooperative MIMO scheme using network coding. In 7th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–5) IEEE, Wuhan, China.
98.
go back to reference Maranhao, J.P., da Costa, J.P., de Freitas, E.P., Marinho, M.A., & Del Galdo, G. (2016). Multi-hop cooperative XIXO transmission scheme for delay tolerant wireless sensor networks. In WSA 2016; 20th International ITG Workshop on Smart Antennas (pp. 1–5). Maranhao, J.P., da Costa, J.P., de Freitas, E.P., Marinho, M.A., & Del Galdo, G. (2016). Multi-hop cooperative XIXO transmission scheme for delay tolerant wireless sensor networks. In WSA 2016; 20th International ITG Workshop on Smart Antennas (pp. 1–5).
99.
go back to reference Li, S., He, C., Wang, Y., Zhang, Y., Liu, J., & Huang, T. (2017). A novel joint power and feedback bit allocation interference alignment scheme for wireless sensor networks. Sensors, 17(3), 563. Li, S., He, C., Wang, Y., Zhang, Y., Liu, J., & Huang, T. (2017). A novel joint power and feedback bit allocation interference alignment scheme for wireless sensor networks. Sensors, 17(3), 563.
100.
go back to reference Rajeswari, K., & Bhagyaveni, M. A. (2017). MAP based V-BLAST transmission to improve network lifetime in virtual MIMO based wireless sensor networks. National Academy Science Letters, 40(6), 409–414. Rajeswari, K., & Bhagyaveni, M. A. (2017). MAP based V-BLAST transmission to improve network lifetime in virtual MIMO based wireless sensor networks. National Academy Science Letters, 40(6), 409–414.
101.
go back to reference Stewart, R., Xie, Q., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., & Paxson, V. (2000). Stream control transmission protocol. In: RFC - 2960. Stewart, R., Xie, Q., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., & Paxson, V. (2000). Stream control transmission protocol. In: RFC - 2960.
102.
go back to reference Madan, R., Cui, S., Lall, S., & Goldsmith, N. A. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3142–3152. Madan, R., Cui, S., Lall, S., & Goldsmith, N. A. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3142–3152.
103.
go back to reference Lin, Z., Li, G., & Li, J. (2020). Cross-layer energy optimization in cooperative MISO wireless sensor networks. Computer Communications, 157, 351. Lin, Z., Li, G., & Li, J. (2020). Cross-layer energy optimization in cooperative MISO wireless sensor networks. Computer Communications, 157, 351.
104.
go back to reference Wu, Q., Zhou, X., & Ge, F. (2017). A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks. Wireless Networks, 23(5), 1591–1610. Wu, Q., Zhou, X., & Ge, F. (2017). A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks. Wireless Networks, 23(5), 1591–1610.
105.
go back to reference Xu, W. Y., Wang, H., & Yu, X. B. (2018). Performance analysis of cross layer design with imperfect channel information in distributed antenna systems. Annals of Telecommunications, 73(9–10), 651–664. Xu, W. Y., Wang, H., & Yu, X. B. (2018). Performance analysis of cross layer design with imperfect channel information in distributed antenna systems. Annals of Telecommunications, 73(9–10), 651–664.
106.
go back to reference Liu, J. S., (2012). Energy-efficient cross-layer design of cooperative MIMO multi-hop wireless sensor networks using column generation. Wireless Personal Communications, 66(1), 185–205. Liu, J. S., (2012). Energy-efficient cross-layer design of cooperative MIMO multi-hop wireless sensor networks using column generation. Wireless Personal Communications, 66(1), 185–205.
107.
108.
go back to reference Som, P., Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2011). Low-complexity detection in large-dimension MIMO-ISI channels using graphical models. IEEE Journal of Selected Topics in Signal Processing, 5(8), 1497–1511. Som, P., Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2011). Low-complexity detection in large-dimension MIMO-ISI channels using graphical models. IEEE Journal of Selected Topics in Signal Processing, 5(8), 1497–1511.
109.
go back to reference Zhang, Y. Y., Zhang, J. K., & Yu, H. Y. (2018). Physically securing energy-based massive MIMO MAC via joint alignment of multi-user constellations and artificial noise. IEEE Journal on Selected Areas in Communications, 36(4), 829–844. Zhang, Y. Y., Zhang, J. K., & Yu, H. Y. (2018). Physically securing energy-based massive MIMO MAC via joint alignment of multi-user constellations and artificial noise. IEEE Journal on Selected Areas in Communications, 36(4), 829–844.
110.
go back to reference Sundaresan, K., Sivakumar, R., Ingram, M.A., & Chang, T.Y. (2004). A fair medium access control protocol for ad-hoc networks with MIMO links. In IEEE INFOCOM (Vol. 4, pp. 2559–2570). Sundaresan, K., Sivakumar, R., Ingram, M.A., & Chang, T.Y. (2004). A fair medium access control protocol for ad-hoc networks with MIMO links. In IEEE INFOCOM (Vol. 4, pp. 2559–2570).
111.
go back to reference Ha, T., Kim, J., & Chung, J. (2018). HE-MAC: Harvest-then-transmit based modified EDCF MAC protocol for wireless powered sensor networks. IEEE Transactions on Wireless Communications, 17(1), 3–16. Ha, T., Kim, J., & Chung, J. (2018). HE-MAC: Harvest-then-transmit based modified EDCF MAC protocol for wireless powered sensor networks. IEEE Transactions on Wireless Communications, 17(1), 3–16.
112.
go back to reference Liu, L., Hua, C., Chen, C., & Guan, X. (2014). Power allocation for virtual MIMO-based three-stage relaying in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 13(12), 6528–6541. Liu, L., Hua, C., Chen, C., & Guan, X. (2014). Power allocation for virtual MIMO-based three-stage relaying in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 13(12), 6528–6541.
113.
go back to reference Eskandari, M., Doost-Hoseini, A. M., Jung, J., & Lee, I. (2018). Antenna selection and power allocation for energy efficient MIMO systems. Journal of Communications and Networks, 20(6), 546–553. Eskandari, M., Doost-Hoseini, A. M., Jung, J., & Lee, I. (2018). Antenna selection and power allocation for energy efficient MIMO systems. Journal of Communications and Networks, 20(6), 546–553.
114.
go back to reference Wen, D., Zhu, G., & Huang, K. (2019). Reduced-dimension design of MIMO over-the-air computing for data aggregation in clustered IoT networks. IEEE Transactions on Wireless Communications, 18(11), 5255–5268. Wen, D., Zhu, G., & Huang, K. (2019). Reduced-dimension design of MIMO over-the-air computing for data aggregation in clustered IoT networks. IEEE Transactions on Wireless Communications, 18(11), 5255–5268.
115.
go back to reference Zhu, G., & Huang, K. (2018). MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet of Things Journal, 6(4), 6089–6103. Zhu, G., & Huang, K. (2018). MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet of Things Journal, 6(4), 6089–6103.
116.
go back to reference Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.
117.
go back to reference Zou, Z., Bao, Y., Li, H., Spencer, B. F., & Ou, J. (2014). Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sensors Journal, 15(2), 797–808. Zou, Z., Bao, Y., Li, H., Spencer, B. F., & Ou, J. (2014). Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sensors Journal, 15(2), 797–808.
118.
go back to reference Zhang, P., & Wang, J. (2019). On enhancing network dynamic adaptability for compressive sensing in WSNs. IEEE Transactions on Communications, 67(12), 8450–8459. Zhang, P., & Wang, J. (2019). On enhancing network dynamic adaptability for compressive sensing in WSNs. IEEE Transactions on Communications, 67(12), 8450–8459.
119.
go back to reference Eltayeb, M. E., Al-Naffouri, T. Y., & Bahrami, H. R. (2014). Compressive sensing for feedback reduction in MIMO broadcast channels. IEEE Transactions on Communications, 62(9), 3209–3222. Eltayeb, M. E., Al-Naffouri, T. Y., & Bahrami, H. R. (2014). Compressive sensing for feedback reduction in MIMO broadcast channels. IEEE Transactions on Communications, 62(9), 3209–3222.
120.
go back to reference Shen, J. C., Zhang, J., Alsusa, E., & Letaief, K. B. (2016). Compressed CSI acquisition in FDD massive MIMO: How much training is needed? IEEE Transactions on Wireless Communications, 15(6), 4145–4156. Shen, J. C., Zhang, J., Alsusa, E., & Letaief, K. B. (2016). Compressed CSI acquisition in FDD massive MIMO: How much training is needed? IEEE Transactions on Wireless Communications, 15(6), 4145–4156.
121.
go back to reference Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302. Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.
122.
go back to reference Song, C., Park, J., Clerckx, B., Lee, I., & Lee, K. J. (2016). Generalized precoder designs based on weighted MMSE criterion for energy harvesting constrained MIMO and multi-user MIMO channels. IEEE Transactions on Wireless Communications, 15(12), 7941–7954. Song, C., Park, J., Clerckx, B., Lee, I., & Lee, K. J. (2016). Generalized precoder designs based on weighted MMSE criterion for energy harvesting constrained MIMO and multi-user MIMO channels. IEEE Transactions on Wireless Communications, 15(12), 7941–7954.
123.
go back to reference Rubio, J., & Pascual-Iserte, A. (2019). User grouping and resource allocation in multiuser MIMO systems under SWIPT. EURASIP Journal on Wireless Communications and Networking, 1, 164. Rubio, J., & Pascual-Iserte, A. (2019). User grouping and resource allocation in multiuser MIMO systems under SWIPT. EURASIP Journal on Wireless Communications and Networking, 1, 164.
124.
go back to reference Ge, W., Zhu, Z., Hao, W., Wang, Y., Wang, Z., Wu, Q., et al. (2019). AN-Aided Secure Beamforming in Power-Splitting-Enabled SWIPT MIMO Heterogeneous Wireless Sensor Networks. Electronics, 8(4), 459. Ge, W., Zhu, Z., Hao, W., Wang, Y., Wang, Z., Wu, Q., et al. (2019). AN-Aided Secure Beamforming in Power-Splitting-Enabled SWIPT MIMO Heterogeneous Wireless Sensor Networks. Electronics, 8(4), 459.
125.
go back to reference Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., & Letaief, K. B. (2018). Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model. IEEE Journal on Selected Areas in Communications, 37(1), 216–232. Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., & Letaief, K. B. (2018). Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model. IEEE Journal on Selected Areas in Communications, 37(1), 216–232.
126.
go back to reference Zhu, Z., Chu, Z., Wang, N., Wang, Z., & Lee, I. (2018). Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with cooperative jammer. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). Zhu, Z., Chu, Z., Wang, N., Wang, Z., & Lee, I. (2018). Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with cooperative jammer. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).
127.
go back to reference Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO–NOMA and MIMO–OMA. IEEE Access, 4, 2123–2129. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO–NOMA and MIMO–OMA. IEEE Access, 4, 2123–2129.
128.
go back to reference Ding, Z., Adachi, F., & Poor, H. V. (2015). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552. Ding, Z., Adachi, F., & Poor, H. V. (2015). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.
129.
go back to reference Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15(6), 4438–4454. Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15(6), 4438–4454.
130.
go back to reference Yang, P., Xiao, Y., Xiao, M., & Ma, Z. (2019). NOMA-aided precoded spatial modulation for downlink MIMO transmissions. IEEE Journal of Selected Topics in Signal Processing, 13(3), 729–738. Yang, P., Xiao, Y., Xiao, M., & Ma, Z. (2019). NOMA-aided precoded spatial modulation for downlink MIMO transmissions. IEEE Journal of Selected Topics in Signal Processing, 13(3), 729–738.
131.
go back to reference Renzo, M.D., Haas, H., Ghrayeb, A., Hanzo, L., & Sugiura, S. (1999). Spatial modulation for multiple-antenna communication. In: Wiley encyclopedia of electrical and electronics engineering (pp. 1–12). Renzo, M.D., Haas, H., Ghrayeb, A., Hanzo, L., & Sugiura, S. (1999). Spatial modulation for multiple-antenna communication. In: Wiley encyclopedia of electrical and electronics engineering (pp. 1–12).
132.
go back to reference Peng, Y., & Youn, C. H. (2015). Lifetime and energy optimization in multi-hop wireless sensor networks with spatial modulation based cooperative MIMO. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 731–732. Peng, Y., & Youn, C. H. (2015). Lifetime and energy optimization in multi-hop wireless sensor networks with spatial modulation based cooperative MIMO. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 731–732.
133.
go back to reference Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.
134.
go back to reference Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.
135.
go back to reference Samimi, M. K., & Rappaport, T. S. (2016). 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2207–2225. Samimi, M. K., & Rappaport, T. S. (2016). 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2207–2225.
136.
go back to reference Sun, S., & Rappaport, T.S. (2017). Millimeter wave MIMO channel estimation based on adaptive compressed sensing. In 2017 IEEE international conference on communications workshops (ICC Workshops) (pp. 47–53). Sun, S., & Rappaport, T.S. (2017). Millimeter wave MIMO channel estimation based on adaptive compressed sensing. In 2017 IEEE international conference on communications workshops (ICC Workshops) (pp. 47–53).
137.
go back to reference Zhang, H., Dong, A., Jin, S., & Yuan, D. (2017). Joint transceiver and power splitting optimization for multiuser MIMO SWIPT under MSE QoS constraints. IEEE Transactions on Vehicular Technology, 66(8), 7123–7135. Zhang, H., Dong, A., Jin, S., & Yuan, D. (2017). Joint transceiver and power splitting optimization for multiuser MIMO SWIPT under MSE QoS constraints. IEEE Transactions on Vehicular Technology, 66(8), 7123–7135.
138.
go back to reference Guo, S., Wang, F., Yang, Y., & Xiao, B. (2015). Energy-efficient cooperative for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417. Guo, S., Wang, F., Yang, Y., & Xiao, B. (2015). Energy-efficient cooperative for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417.
139.
go back to reference Zhu, Z., Chu, Z., Zhou, F., Niu, H., Wang, Z., & Lee, I. (2017). Secure beamforming designs for secrecy MIMO SWIPT systems. IEEE Wireless Communications Letters, 7(3), 424–427. Zhu, Z., Chu, Z., Zhou, F., Niu, H., Wang, Z., & Lee, I. (2017). Secure beamforming designs for secrecy MIMO SWIPT systems. IEEE Wireless Communications Letters, 7(3), 424–427.
140.
go back to reference Zhu, Z., Ge, W., Wang, N., Wang, Y., Hao, W., Chu, Z., & Wang, Z. (2019). AN-based beamforming design in secrecy heterogeneous WSN with MIMO-SWIPT. In 2019 IEEE international conference on communications workshops (pp. 1–6). Zhu, Z., Ge, W., Wang, N., Wang, Y., Hao, W., Chu, Z., & Wang, Z. (2019). AN-based beamforming design in secrecy heterogeneous WSN with MIMO-SWIPT. In 2019 IEEE international conference on communications workshops (pp. 1–6).
141.
go back to reference Neelamegam, S., & Mahalingam, M. (2019). Performance analysis of cooperative wireless sensor network with index-based modulation. The Journal of Engineering, 2019(5), 3438–3441. Neelamegam, S., & Mahalingam, M. (2019). Performance analysis of cooperative wireless sensor network with index-based modulation. The Journal of Engineering, 2019(5), 3438–3441.
142.
go back to reference Yu, X., Li, Q., Pan, Q., Hu, Y., & Du, Y. (2019). Performance analysis for spatial modulation with AF relaying over spatially correlated Rayleigh channels. IEEE Access, 7, 115926–115935. Yu, X., Li, Q., Pan, Q., Hu, Y., & Du, Y. (2019). Performance analysis for spatial modulation with AF relaying over spatially correlated Rayleigh channels. IEEE Access, 7, 115926–115935.
143.
go back to reference Hlaing, N. W., Farzamnia, A., Mariappan, M., & Haldar, M. K. (2019). Network coding schemes with efficient LDPC coded MIMO–NOMA in two-way relay networks. IET Communications, 14(2), 337–348. Hlaing, N. W., Farzamnia, A., Mariappan, M., & Haldar, M. K. (2019). Network coding schemes with efficient LDPC coded MIMO–NOMA in two-way relay networks. IET Communications, 14(2), 337–348.
144.
go back to reference Tran, D. D., Ha, D. B., So-In, C., Tran, H., Nguyen, T. G., Baig, Z. A., et al. (2018). Performance analysis of DF/AF cooperative MISO wireless sensor networks With NOMA and SWIPT over nakagami-fading. IEEE Access, 6, 56142–56161. Tran, D. D., Ha, D. B., So-In, C., Tran, H., Nguyen, T. G., Baig, Z. A., et al. (2018). Performance analysis of DF/AF cooperative MISO wireless sensor networks With NOMA and SWIPT over nakagami-fading. IEEE Access, 6, 56142–56161.
145.
go back to reference Nguyen, T. G., So-In, C., & Tran, H. (2020). Outage performance analysis of energy harvesting wireless sensor networks for NOMA transmissions. Mobile Networks and Applications, 25(1), 23–41. Nguyen, T. G., So-In, C., & Tran, H. (2020). Outage performance analysis of energy harvesting wireless sensor networks for NOMA transmissions. Mobile Networks and Applications, 25(1), 23–41.
146.
go back to reference Li, Y., & Baduge, G. A. A. (2018). Underlay spectrum-sharing massive MIMO NOMA. IEEE Communications Letters, 23(1), 116–119. Li, Y., & Baduge, G. A. A. (2018). Underlay spectrum-sharing massive MIMO NOMA. IEEE Communications Letters, 23(1), 116–119.
147.
go back to reference Castanheira, D., Lopes, P., Silva, A., & Gameiro, A. (2017). Hybrid beamforming designs for massive MIMO millimeter-wave heterogeneous systems. IEEE Access, 5, 21806–21817. Castanheira, D., Lopes, P., Silva, A., & Gameiro, A. (2017). Hybrid beamforming designs for massive MIMO millimeter-wave heterogeneous systems. IEEE Access, 5, 21806–21817.
148.
go back to reference Gómez-Cuba, F., & Zorzi, M. (2019). Optimal link scheduling in millimeter wave multi-hop networks with MU-MIMO radios. IEEE Transactions on Wireless Communications, 19, 1. Gómez-Cuba, F., & Zorzi, M. (2019). Optimal link scheduling in millimeter wave multi-hop networks with MU-MIMO radios. IEEE Transactions on Wireless Communications, 19, 1.
Metadata
Title
A comprehensive review of cooperative MIMO WSN: its challenges and the emerging technologies
Authors
Sarah Asheer
Sanjeet Kumar
Publication date
26-11-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2021
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02506-w

Other articles of this Issue 2/2021

Wireless Networks 2/2021 Go to the issue