Skip to main content
Top

2021 | OriginalPaper | Chapter

A Comprehensive Review on Effect of Band Selection on the Recital of Hyper-spectral Image Classification

Authors : Kalidindi Kishore Raju, G. P. Saradhi Varma, Davuluri Rajyalakshmi

Published in: Microelectronics, Electromagnetics and Telecommunications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In every research field algorithms have been realized by various authors. These algorithms like geo-spatial-based land cover and land use research are to reassess in day by day. The recital of land cover and land use (LCLU) nomenclature of hyper-spectral image chiefly depends on two principal concerns listed, namely (i) huge number of predictive pixels with hundreds of spectral bands as dimensionality and (ii) noisy and redundant bands that may mislead the classification accuracy. When compared with a number of spectral bands due to less training sample instances, they have sceptical collision on the accuracy of supervised classifiers which is called as the Hughes effect. This paper is to study the result of reduction in dimensionality by selecting relevant bands and eliminating irrelevant and redundant ones by varied feature selection techniques. Once the bands are selected, they will be supplied to unlike classifiers namely support vector machine (SVM), Bayes and decision tree classifiers to examine the effect on classification accuracy and also estimate the decency of fit. In this regard, we employ two hyper-spectral image data sets, namely Indian Pines and Botswana, which are used. With a minimal spectral bands subset, it can achieve maximum classifier accuracy with the help of support vector machine-REF, joint mutual information (JMMI) and high-dimensional model representation (HDMR), and the feature selection methods are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Landgrebe D (2002) Hyper-spectral image data analysis. IEEE Signal Process Mag 19(1):17–28 Landgrebe D (2002) Hyper-spectral image data analysis. IEEE Signal Process Mag 19(1):17–28
2.
go back to reference Guo B, Gunn S, Damper R, Nelson J (2008) Customizing kernel functions for SVM-based hyper-spectral image classification. IEEE Trans Image Process 17(4):622–629 Guo B, Gunn S, Damper R, Nelson J (2008) Customizing kernel functions for SVM-based hyper-spectral image classification. IEEE Trans Image Process 17(4):622–629
3.
go back to reference Jiao H, Zhong Y, Zhang L, Li P (2011) Unsupervised remote sensing image classification using an artificial DNA computing. In: Proceedings of the international conference on computing, networking and communications, July 2011, vol 3, pp 1341–1345 Jiao H, Zhong Y, Zhang L, Li P (2011) Unsupervised remote sensing image classification using an artificial DNA computing. In: Proceedings of the international conference on computing, networking and communications, July 2011, vol 3, pp 1341–1345
6.
go back to reference Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56:5046–5063CrossRef Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56:5046–5063CrossRef
7.
go back to reference Yang L, Yang S, Jin P, Zhang R (2014) Semi-supervised hyper-spectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci Remote Sens Lett 11(3):651–655CrossRef Yang L, Yang S, Jin P, Zhang R (2014) Semi-supervised hyper-spectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geosci Remote Sens Lett 11(3):651–655CrossRef
8.
go back to reference Yang S, Qiao Y, Yang L, Jin P, Jiao L (2014) Hyper-spectral image classification based on relaxed clustering assumption and spatial Laplace regularizer. IEEE Geosci Remote Sens Lett 11(5):901–905CrossRef Yang S, Qiao Y, Yang L, Jin P, Jiao L (2014) Hyper-spectral image classification based on relaxed clustering assumption and spatial Laplace regularizer. IEEE Geosci Remote Sens Lett 11(5):901–905CrossRef
9.
go back to reference Yang CSL, Chuang L, Ke CH, Yang CH (2008) A hybrid feature selection method for microarray classification. IAENG Int J Comput Sci 35(3) Yang CSL, Chuang L, Ke CH, Yang CH (2008) A hybrid feature selection method for microarray classification. IAENG Int J Comput Sci 35(3)
10.
go back to reference Zhang X, Pan Z, Lu X, Hu B, Zheng X (2018) Hyperspectral image classification based on joint spectrum of spatial space and spectral space. Multimed Tools Appl 77(22):29759–29777CrossRef Zhang X, Pan Z, Lu X, Hu B, Zheng X (2018) Hyperspectral image classification based on joint spectrum of spatial space and spectral space. Multimed Tools Appl 77(22):29759–29777CrossRef
11.
go back to reference Jiang J, Ma J, Chen C, Wang Z, Cai Z, Wang L (2018) SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Trans Geosci Remote Sens 56:4581–4593CrossRef Jiang J, Ma J, Chen C, Wang Z, Cai Z, Wang L (2018) SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Trans Geosci Remote Sens 56:4581–4593CrossRef
12.
go back to reference Medjahed SA, Saadi TA, Benyettou A, Ouali M (2016) A new post-classification and band selection frameworks for hyperspectral image classification. Egypt J Remote Sens Space Sci 19:163–173 Medjahed SA, Saadi TA, Benyettou A, Ouali M (2016) A new post-classification and band selection frameworks for hyperspectral image classification. Egypt J Remote Sens Space Sci 19:163–173
14.
go back to reference ElMasry G, Sun D-W, Allen P (2012) Near-infrared hyper-spectral imaging for predicting colour, pH and tenderness of fresh beef. J Food Eng 110(1):127–140CrossRef ElMasry G, Sun D-W, Allen P (2012) Near-infrared hyper-spectral imaging for predicting colour, pH and tenderness of fresh beef. J Food Eng 110(1):127–140CrossRef
15.
go back to reference Medjahed SA, Ouali M (2018) Selection based on optimization approach for hyper-spectral image classification. Egypt J Remote Sens Space Sci Medjahed SA, Ouali M (2018) Selection based on optimization approach for hyper-spectral image classification. Egypt J Remote Sens Space Sci
17.
go back to reference Jiang SY, Wang LX (2016) Efficient feature selection based on correlation measure between continuous and discrete features. Inf Process Lett 116(2):203–2015MathSciNetCrossRef Jiang SY, Wang LX (2016) Efficient feature selection based on correlation measure between continuous and discrete features. Inf Process Lett 116(2):203–2015MathSciNetCrossRef
18.
go back to reference Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(4):1106–1119 Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(4):1106–1119
19.
go back to reference Saeys Y, Inza I, Pedro L (2007) A review of feature selection techniques in bioinformatics. Bioinform Adv 23(13):2507–2517CrossRef Saeys Y, Inza I, Pedro L (2007) A review of feature selection techniques in bioinformatics. Bioinform Adv 23(13):2507–2517CrossRef
20.
go back to reference Lin P, Thapa N, Omer I, Zhang J (2011) Feature selection: a pre-process for data perturbation. IAENG Int J Comput Sci 38(2):168–175 Lin P, Thapa N, Omer I, Zhang J (2011) Feature selection: a pre-process for data perturbation. IAENG Int J Comput Sci 38(2):168–175
21.
go back to reference Qi M, Fu Z, Chen F (2016) Research on a feature selection method based on median impact value for modeling in thermal power plants. Appl Therm Eng 94:472–477CrossRef Qi M, Fu Z, Chen F (2016) Research on a feature selection method based on median impact value for modeling in thermal power plants. Appl Therm Eng 94:472–477CrossRef
23.
go back to reference Ma S, Huang J (2008) Penalized feature selection and classification in bioinformatics. Brief Bioinform 9(5):392–403CrossRef Ma S, Huang J (2008) Penalized feature selection and classification in bioinformatics. Brief Bioinform 9(5):392–403CrossRef
24.
go back to reference Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. In: Data classification: algorithms and applications, p 37 Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. In: Data classification: algorithms and applications, p 37
25.
go back to reference Silvestre C, Cardoso MG, Figueiredo M (2015) Feature selection for clustering categorical data with an embedded modelling approach. Expert Syst 32(3):444–453 Silvestre C, Cardoso MG, Figueiredo M (2015) Feature selection for clustering categorical data with an embedded modelling approach. Expert Syst 32(3):444–453
26.
go back to reference Bermejo P, de la Ossa L, Gámez JA, Puerta JM (2012) Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking. Knowl-Based Syst 25(1):35–44CrossRef Bermejo P, de la Ossa L, Gámez JA, Puerta JM (2012) Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking. Knowl-Based Syst 25(1):35–44CrossRef
27.
go back to reference Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182MATH Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182MATH
28.
go back to reference Duda OR, Hart EP, Stork GD (2012) Pattern classification Duda OR, Hart EP, Stork GD (2012) Pattern classification
29.
go back to reference Sui B (2013) Information gain feature selection based on feature interactions. Doctoral dissertation, University of Houston Sui B (2013) Information gain feature selection based on feature interactions. Doctoral dissertation, University of Houston
30.
go back to reference Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. AAAI 2:129–134 Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. AAAI 2:129–134
31.
go back to reference Kononenko I, Šimec E, Robnik-Šikonja M (1997) Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell 7(1):39–55CrossRef Kononenko I, Šimec E, Robnik-Šikonja M (1997) Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell 7(1):39–55CrossRef
32.
go back to reference Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on speech and natural language. Association for Computational Linguistics, Morristown, NJ, USA, pp 2012–2017 Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on speech and natural language. Association for Computational Linguistics, Morristown, NJ, USA, pp 2012–2017
33.
go back to reference Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550CrossRef Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550CrossRef
34.
go back to reference Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef
35.
go back to reference Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28CrossRef Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28CrossRef
36.
go back to reference Oh I, Lee J, Moon B (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437CrossRef Oh I, Lee J, Moon B (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437CrossRef
37.
go back to reference Shevade SK, Keerthi SS (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19:2246–2253CrossRef Shevade SK, Keerthi SS (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19:2246–2253CrossRef
38.
go back to reference Cawley GC, Talbot NLC (2006) Gene selection in cancer classification using sparse logistic regression with bayesian regularization. Bioinformatics 22(19):2348–2355 Cawley GC, Talbot NLC (2006) Gene selection in cancer classification using sparse logistic regression with bayesian regularization. Bioinformatics 22(19):2348–2355
40.
go back to reference Hall MA, Smith LA (1999) Feature selection for machine learning: comparing a correlation based filter approach to the wrapper. In: Proceedings of the twelfth international Florida artificial intelligence research society conference, pp 235–239. ISBN: 1-57735-080-4 Hall MA, Smith LA (1999) Feature selection for machine learning: comparing a correlation based filter approach to the wrapper. In: Proceedings of the twelfth international Florida artificial intelligence research society conference, pp 235–239. ISBN: 1-57735-080-4
41.
go back to reference Liu H, Motoda H (2008) Computational methods of feature selection. Chapman & Hall Liu H, Motoda H (2008) Computational methods of feature selection. Chapman & Hall
42.
go back to reference Gini C (1912) Variabilitae mutabilita. In: Memori di metodologia statistica Gini C (1912) Variabilitae mutabilita. In: Memori di metodologia statistica
43.
go back to reference Cover TM, Thomas JA (1991) Elements of information theory. Wiley Cover TM, Thomas JA (1991) Elements of information theory. Wiley
44.
go back to reference Wei LJ (1981) Asymptotic conservativeness and efficiency of Kruskal-Wallis test for k dependent samples. J Am Stat Assoc 76(376):1006–1009 Wei LJ (1981) Asymptotic conservativeness and efficiency of Kruskal-Wallis test for k dependent samples. J Am Stat Assoc 76(376):1006–1009
45.
go back to reference Ding F, Peng C, Long H (2015) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238 Ding F, Peng C, Long H (2015) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238
46.
go back to reference Runger GC, Montgomery DC, Hubele NF (2007) Engineering statistics. Wiley, Hoboken, NJ Runger GC, Montgomery DC, Hubele NF (2007) Engineering statistics. Wiley, Hoboken, NJ
48.
go back to reference Raju KK, Varma GPS, Rajyalakshmi D, Alluri S (2017) An effective semi supervised classification of hyper spectral remote sensing images with spatially neighbour hoods. J Adv Res Dyn Control Syst 15:701–711 Raju KK, Varma GPS, Rajyalakshmi D, Alluri S (2017) An effective semi supervised classification of hyper spectral remote sensing images with spatially neighbour hoods. J Adv Res Dyn Control Syst 15:701–711
Metadata
Title
A Comprehensive Review on Effect of Band Selection on the Recital of Hyper-spectral Image Classification
Authors
Kalidindi Kishore Raju
G. P. Saradhi Varma
Davuluri Rajyalakshmi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3828-5_33