Skip to main content
Top
Published in: Wireless Personal Communications 2/2019

20-05-2019

A Comprehensive Survey of Visible Light Communication: Potential and Challenges

Authors: Sanjeev Kumar, Preeti Singh

Published in: Wireless Personal Communications | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Visible light communication (VLC) is seen as a potential candidate for next generation communication networks. In the last decade VLC has emerged out as complementary technology to radio frequency wireless communication according to different requirements and applications. This technology can be considered as a valuable contributor to the present communication networks issues like spectrum congestion and system’s capacity. This paper provides a comprehensive review of the VLC system. The various benefits and applications of VLC system along with the possibility for the next generation communication systems has been discussed. Different modulation techniques are discussed and comparison is also provide with MATLAB simulations. It also provides comprehensive review of various challenges faced by VLC system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Elgala, H., Mesleh, R., & Haas, H. (2009). Indoor broadcasting via white LEDs and OFDM. IEEE Transactions on Consumer Electronics, 55(3), 1127–1134.CrossRef Elgala, H., Mesleh, R., & Haas, H. (2009). Indoor broadcasting via white LEDs and OFDM. IEEE Transactions on Consumer Electronics, 55(3), 1127–1134.CrossRef
2.
go back to reference Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., & Haas, H. (2014). VLC: Beyond point-to-point communication. IEEE Communications Magazine, 52(7), 98–105.CrossRef Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., & Haas, H. (2014). VLC: Beyond point-to-point communication. IEEE Communications Magazine, 52(7), 98–105.CrossRef
3.
go back to reference Malik, A., Kumar, S., Singh, P., & Kaur, P. (2018). Performance enhancement of point-to-point FSO system under rain weather conditions. In Intelligent communication, control and devices (pp. 623–631). Singapore: Springer. Malik, A., Kumar, S., Singh, P., & Kaur, P. (2018). Performance enhancement of point-to-point FSO system under rain weather conditions. In Intelligent communication, control and devices (pp. 623–631). Singapore: Springer.
4.
go back to reference Sevincer, A., Bhattarai, A., Bilgi, M., Yuksel, M., & Pala, N. (2013). LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey. IEEE Communications Surveys & Tutorials, 15(4), 1620–1641.CrossRef Sevincer, A., Bhattarai, A., Bilgi, M., Yuksel, M., & Pala, N. (2013). LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey. IEEE Communications Surveys & Tutorials, 15(4), 1620–1641.CrossRef
5.
go back to reference Karunatilaka, D., Zafar, F., Kalavally, V., & Parthiban, R. (2015). LED based indoor visible light communications: state of the art. IEEE Communications Surveys and Tutorials, 17(3), 1649–1678.CrossRef Karunatilaka, D., Zafar, F., Kalavally, V., & Parthiban, R. (2015). LED based indoor visible light communications: state of the art. IEEE Communications Surveys and Tutorials, 17(3), 1649–1678.CrossRef
6.
go back to reference Pathak, P. H., Feng, X., Pengfei, H., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.CrossRef Pathak, P. H., Feng, X., Pengfei, H., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.CrossRef
7.
go back to reference Tsonev, D., Videv, S., & Haas, H. (2015). Towards a 100 Gb/s visible light wireless access network. Optics Express, 23(2), 1627–1637.CrossRef Tsonev, D., Videv, S., & Haas, H. (2015). Towards a 100 Gb/s visible light wireless access network. Optics Express, 23(2), 1627–1637.CrossRef
8.
go back to reference Ghassemlooy, Z., Alves, L. N., Zvanovec, S., & Khalighi, M.-A. (Eds.). (2017). Visible light communications: Theory and applications. Cambridge: CRC Press. Ghassemlooy, Z., Alves, L. N., Zvanovec, S., & Khalighi, M.-A. (Eds.). (2017). Visible light communications: Theory and applications. Cambridge: CRC Press.
9.
go back to reference Parikh, H., Chokshi, J., Gala, N., & Biradar, T. (2013). Wirelessly transmitting a grayscale image using visible light. In 2013 international conference on advances in technology and engineering (ICATE) (pp. 1–6). IEEE. Parikh, H., Chokshi, J., Gala, N., & Biradar, T. (2013). Wirelessly transmitting a grayscale image using visible light. In 2013 international conference on advances in technology and engineering (ICATE) (pp. 1–6). IEEE.
10.
go back to reference Wood, R. (2014). Wireless network traffic worldwide: forecasts and analysis 2014–2019. Analysys Mason Limited, New Delhi, India, Technical Report. Wood, R. (2014). Wireless network traffic worldwide: forecasts and analysis 2014–2019. Analysys Mason Limited, New Delhi, India, Technical Report.
11.
go back to reference Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.CrossRef Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.CrossRef
12.
go back to reference Tuenge, J. R. (2013). SSL pricing and efficacy trend analysis for utility program planning. No. PNNL-22908. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Tuenge, J. R. (2013). SSL pricing and efficacy trend analysis for utility program planning. No. PNNL-22908. Pacific Northwest National Lab. (PNNL), Richland, WA (United States).
13.
go back to reference Wu, S., Wang, H., & Youn, C.-H. (2014). Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Network, 28(6), 41–45.CrossRef Wu, S., Wang, H., & Youn, C.-H. (2014). Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Network, 28(6), 41–45.CrossRef
14.
go back to reference Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRef Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRef
15.
go back to reference Haas, H. (2017). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 3, 26–31.CrossRef Haas, H. (2017). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 3, 26–31.CrossRef
16.
go back to reference Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: system and channel modelling with Matlab ®. Cambridge: CRC Press. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: system and channel modelling with Matlab ®. Cambridge: CRC Press.
17.
go back to reference Kraemer, R., & Katz, M. (Eds.). (2009). Short-range wireless communications: Emerging technologies and applications. New York: Wiley. Kraemer, R., & Katz, M. (Eds.). (2009). Short-range wireless communications: Emerging technologies and applications. New York: Wiley.
18.
go back to reference Randel, S., Breyer, F., Lee, S. C. J., & Walewski, J. W. (2010). Advanced modulation schemes for short-range optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1280–1289.CrossRef Randel, S., Breyer, F., Lee, S. C. J., & Walewski, J. W. (2010). Advanced modulation schemes for short-range optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1280–1289.CrossRef
19.
go back to reference Gfeller, F. R., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474–1486.CrossRef Gfeller, F. R., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474–1486.CrossRef
20.
go back to reference Brien, D. O., Zeng, L., Minh, H. L., Faulkner, G., Bouchet, O., Randel, S., & Walewski, J. (2009). Visible light communication. In R. Kraemer & M. Katz (Eds.), Short-range wireless communications: Emerging technologies and applications. New Jersey: Wiley Publishing. Brien, D. O., Zeng, L., Minh, H. L., Faulkner, G., Bouchet, O., Randel, S., & Walewski, J. (2009). Visible light communication. In R. Kraemer & M. Katz (Eds.), Short-range wireless communications: Emerging technologies and applications. New Jersey: Wiley Publishing.
21.
go back to reference Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50, 100–107.CrossRef Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50, 100–107.CrossRef
22.
go back to reference Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298.CrossRef Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298.CrossRef
23.
go back to reference Delgado, F., Quintana, I., & Rufo, J. (2010). Design and implementation of an EthernetVLC interface for broadcast transmissions. IEEE Communications Letters, 14(12), 1089–1091.CrossRef Delgado, F., Quintana, I., & Rufo, J. (2010). Design and implementation of an EthernetVLC interface for broadcast transmissions. IEEE Communications Letters, 14(12), 1089–1091.CrossRef
24.
go back to reference Shiu, D. S., & Kahn, J. (1999). Differential pulse position modulation for power efficient optical communication. IEEE Transactions on Communications, 47(8), 1201–1210.CrossRef Shiu, D. S., & Kahn, J. (1999). Differential pulse position modulation for power efficient optical communication. IEEE Transactions on Communications, 47(8), 1201–1210.CrossRef
25.
go back to reference IEEE Std. 802.15.7-2011. (2011). IEEE standard for local and metropolitan area networks, part 15.7: Short-range wireless optical communication using visible light. IEEE Std. IEEE Std. 802.15.7-2011. (2011). IEEE standard for local and metropolitan area networks, part 15.7: Short-range wireless optical communication using visible light. IEEE Std.
26.
go back to reference Guerra, V., Suarez-Rodriguez, C., El-Asmar, O., Rabadan, J., & Perez-Jimenez, R. (2015). Pulse width modulated optical OFDM. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1333–1337). IEEE. Guerra, V., Suarez-Rodriguez, C., El-Asmar, O., Rabadan, J., & Perez-Jimenez, R. (2015). Pulse width modulated optical OFDM. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1333–1337). IEEE.
27.
go back to reference Randel, S., Breyer, F., Lee, S. C. J., et al. (2010). Advanced modulation schemes for shortrange optical communications. IEEE Journal of Selected Topics in Quantum Electronics, PP(99), 1–10. Randel, S., Breyer, F., Lee, S. C. J., et al. (2010). Advanced modulation schemes for shortrange optical communications. IEEE Journal of Selected Topics in Quantum Electronics, PP(99), 1–10.
28.
go back to reference Pradana, A., Ahmadi, N., Adiono, T., Cahyadi, W. A., & Chung, Y.-H. (2015). VLC physical layer design based on Pulse Position Modulation (PPM) for stable illumination. In 2015 international symposium on intelligent signal processing and communication systems (ISPACS) (pp. 368–373). IEEE. Pradana, A., Ahmadi, N., Adiono, T., Cahyadi, W. A., & Chung, Y.-H. (2015). VLC physical layer design based on Pulse Position Modulation (PPM) for stable illumination. In 2015 international symposium on intelligent signal processing and communication systems (ISPACS) (pp. 368–373). IEEE.
29.
go back to reference Zeng, Y., Green, R., & Leeson, M. (2008). Multiple pulse amplitude and position modulation for the optical wireless channel. In 2008 10th anniversary international conference on transparent optical networks, Athens (pp. 193–196). Zeng, Y., Green, R., & Leeson, M. (2008). Multiple pulse amplitude and position modulation for the optical wireless channel. In 2008 10th anniversary international conference on transparent optical networks, Athens (pp. 193–196).
30.
go back to reference Haigh, P., Le, S. T., Zvanovec, S., et al. (2015). Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communications, 22(2), 46–53.CrossRef Haigh, P., Le, S. T., Zvanovec, S., et al. (2015). Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communications, 22(2), 46–53.CrossRef
31.
go back to reference Komine, T., Haruyama, S., & Nakagawa, M. (2006). Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication. In Proceedings of international symposium on wireless pervasive computing. Komine, T., Haruyama, S., & Nakagawa, M. (2006). Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication. In Proceedings of international symposium on wireless pervasive computing.
32.
go back to reference Afgani, M., Haas, H., Elgala, H., & Knipp, D. (2006). Visible light communication using OFDM. In Proceedings of 2nd international conference on testbeds and research infrastructures for the development of networks and communities. TRIDENTCOM (pp. 6–134). Afgani, M., Haas, H., Elgala, H., & Knipp, D. (2006). Visible light communication using OFDM. In Proceedings of 2nd international conference on testbeds and research infrastructures for the development of networks and communities. TRIDENTCOM (pp. 6–134).
33.
go back to reference Dissanayake, S. D., & Armstrong, J. (2013). Comparison of aco-ofdm, dco-ofdm and ado-ofdm in im/dd systems. Journal of Lightwave Technology, 31(7), 1063–1072.CrossRef Dissanayake, S. D., & Armstrong, J. (2013). Comparison of aco-ofdm, dco-ofdm and ado-ofdm in im/dd systems. Journal of Lightwave Technology, 31(7), 1063–1072.CrossRef
34.
go back to reference Armstrong, J., & Lowery, A. (2006). Power efficient optical OFDM. Electronics Letters, 42(6), 370–372.CrossRef Armstrong, J., & Lowery, A. (2006). Power efficient optical OFDM. Electronics Letters, 42(6), 370–372.CrossRef
35.
go back to reference Lee, S. C. J., Randel, S., & Breyer, F. (2009). PAM-DMT for intensitymodulated and directdetection optical communication systems. IEEE Photonics Technology Letters, 21(23), 1749–1751.CrossRef Lee, S. C. J., Randel, S., & Breyer, F. (2009). PAM-DMT for intensitymodulated and directdetection optical communication systems. IEEE Photonics Technology Letters, 21(23), 1749–1751.CrossRef
36.
go back to reference Fernando, N., Hong, Y., & Viterbo, E. (2012). Flip-OFDM for unipolar communication systems. IEEE Transactions on Communications, 60(12), 3726–3733.CrossRef Fernando, N., Hong, Y., & Viterbo, E. (2012). Flip-OFDM for unipolar communication systems. IEEE Transactions on Communications, 60(12), 3726–3733.CrossRef
37.
go back to reference Proakis, J. G., Salehi, M., Zhou, N., & Li, X. (1994). Communication systems engineering (Vol. 2). New Jersey: Prentice Hall.MATH Proakis, J. G., Salehi, M., Zhou, N., & Li, X. (1994). Communication systems engineering (Vol. 2). New Jersey: Prentice Hall.MATH
38.
go back to reference Mossaad, M., Hranilovic, S., & Lampe, L. (2015). Visible light communications using OFDM and multiple LEDs. IEEE Transactions on Communications, 63(11), 4304–4313.CrossRef Mossaad, M., Hranilovic, S., & Lampe, L. (2015). Visible light communications using OFDM and multiple LEDs. IEEE Transactions on Communications, 63(11), 4304–4313.CrossRef
39.
go back to reference Elgala, H., & Little, T. D. C. (2013). Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links. Optics Express, 21(20), 24288–24299.CrossRef Elgala, H., & Little, T. D. C. (2013). Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links. Optics Express, 21(20), 24288–24299.CrossRef
40.
go back to reference Dissanayake, S. D., Panta, K., & Armstrong, J. (2011). A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. In 2011 IEEE GLOBECOM workshops (GC Wkshps), Houston, TX (pp. 782–786). Dissanayake, S. D., Panta, K., & Armstrong, J. (2011). A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. In 2011 IEEE GLOBECOM workshops (GC Wkshps), Houston, TX (pp. 782–786).
41.
go back to reference Ranjha, B., & Kavehrad, M. (2014). Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. IEEE/OSA Journal of Optical Communications and Networking, 6(4), 387–396.CrossRef Ranjha, B., & Kavehrad, M. (2014). Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. IEEE/OSA Journal of Optical Communications and Networking, 6(4), 387–396.CrossRef
42.
go back to reference Elgala, H., & Little, T. D. C. (2014). P-OFDM: Spectrally efficient unipolar OFDM. In OFC 2014, San Francisco, CA (pp. 1–3). Elgala, H., & Little, T. D. C. (2014). P-OFDM: Spectrally efficient unipolar OFDM. In OFC 2014, San Francisco, CA (pp. 1–3).
43.
go back to reference Elgala, H., & Little, T. D. C. (2015). Polar based OFDM and SC-FDE links toward energy efficient GBPS transmission under IM-DD optical system constraints invited. Journal of Optical Communications and Networking, 7(2), A277–A284.CrossRef Elgala, H., & Little, T. D. C. (2015). Polar based OFDM and SC-FDE links toward energy efficient GBPS transmission under IM-DD optical system constraints invited. Journal of Optical Communications and Networking, 7(2), A277–A284.CrossRef
44.
go back to reference Wu, N., & Bar-Ness, Y. (2015). A novel powerefficient scheme asymmetrically and symmetrically clipping optical (ASCO)-OFDM for IM/DD optical systems. EURASIP Journal on Advances in Signal Processing, 2015(1), 1–10.CrossRef Wu, N., & Bar-Ness, Y. (2015). A novel powerefficient scheme asymmetrically and symmetrically clipping optical (ASCO)-OFDM for IM/DD optical systems. EURASIP Journal on Advances in Signal Processing, 2015(1), 1–10.CrossRef
45.
go back to reference Asadzadeh, K., Farid, A. A., & Hranilovic, S. (2011). Spectrally factorized optical OFDM. In 2011 12th Canadian workshop on information theory, Kelowna (pp. 102–105). Asadzadeh, K., Farid, A. A., & Hranilovic, S. (2011). Spectrally factorized optical OFDM. In 2011 12th Canadian workshop on information theory, Kelowna (pp. 102–105).
46.
go back to reference Mao, T., Qian, C., Wang, Q., Quan, J., & Wang, Z. (2015). PM-DCO-OFDM for PAPR reduction in visible light communications. In 2015 opto-electronics and communications conference (OECC), Shanghai (pp. 1–3). Mao, T., Qian, C., Wang, Q., Quan, J., & Wang, Z. (2015). PM-DCO-OFDM for PAPR reduction in visible light communications. In 2015 opto-electronics and communications conference (OECC), Shanghai (pp. 1–3).
47.
go back to reference Tsonev, D., & Haas, H. (2014). Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 3336–3341). Tsonev, D., & Haas, H. (2014). Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 3336–3341).
48.
go back to reference Islim, M. S., Tsonev, D., & Haas, H. (2015). On the superposition modulation for OFDM-based optical wireless communication. In 2015 IEEE global conference on signal and information processing (GlobalSIP), Orlando, FL (pp. 1022–1026). Islim, M. S., Tsonev, D., & Haas, H. (2015). On the superposition modulation for OFDM-based optical wireless communication. In 2015 IEEE global conference on signal and information processing (GlobalSIP), Orlando, FL (pp. 1022–1026).
49.
go back to reference Elgala, H., & Little, T. D. C. (2015). SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), Washington DC (pp. 851–855). Elgala, H., & Little, T. D. C. (2015). SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), Washington DC (pp. 851–855).
50.
go back to reference Wang, Q., Qian, C., & Guo, X. (2015). Layered ACO-OFDM for intensitymodulated directdetection optical wireless transmission. Optics Express, 23(9), 12382–12393.CrossRef Wang, Q., Qian, C., & Guo, X. (2015). Layered ACO-OFDM for intensitymodulated directdetection optical wireless transmission. Optics Express, 23(9), 12382–12393.CrossRef
51.
go back to reference Kozu, T., & Ohuchi, K. (2015). Proposal for superposed ACO-OFDM using several even subcarriers. In 2015 9th international conference on signal processing and communication systems (ICSPCS), Cairns, QLD (pp. 1–5). Kozu, T., & Ohuchi, K. (2015). Proposal for superposed ACO-OFDM using several even subcarriers. In 2015 9th international conference on signal processing and communication systems (ICSPCS), Cairns, QLD (pp. 1–5).
52.
go back to reference Lowery, A. J. (2016). Comparisons of spectrallyenhanced asymmetricallyclipped optical OFDM systems. Optics Express, 24(4), 3950–3966.CrossRef Lowery, A. J. (2016). Comparisons of spectrallyenhanced asymmetricallyclipped optical OFDM systems. Optics Express, 24(4), 3950–3966.CrossRef
53.
go back to reference Islim, M. S., Tsonev, D., & Haas, H. (2015). Spectrally enhanced PAM-DMT for IM/DD optical wireless communications. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 877–882). Islim, M. S., Tsonev, D., & Haas, H. (2015). Spectrally enhanced PAM-DMT for IM/DD optical wireless communications. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 877–882).
54.
go back to reference Moreolo, M. S., Muñoz, R., & Junyent, G. (2010). Novel power efficient optical OFDM based on Hartley transform for intensitymodulated directdetection systems. Journal of Lightwave Technology, 28(5), 798–805.CrossRef Moreolo, M. S., Muñoz, R., & Junyent, G. (2010). Novel power efficient optical OFDM based on Hartley transform for intensitymodulated directdetection systems. Journal of Lightwave Technology, 28(5), 798–805.CrossRef
55.
go back to reference Huang, W., Gong, C., & Xu, Z. (2015). System and waveform design for wavelet packet division multiplexing-based visible light communications. Journal of Lightwave Technology, 33(14), 3041–3051. Huang, W., Gong, C., & Xu, Z. (2015). System and waveform design for wavelet packet division multiplexing-based visible light communications. Journal of Lightwave Technology, 33(14), 3041–3051.
56.
go back to reference Noshad, M., & Brandt-Pearce, M. (2016). Hadamard coded modulation for visible light communications. IEEE Transactions on Communications, PP(99), 1. Noshad, M., & Brandt-Pearce, M. (2016). Hadamard coded modulation for visible light communications. IEEE Transactions on Communications, PP(99), 1.
57.
go back to reference Wang, T. Q., & Huang, X. (2017). Fractional reverse polarity optical OFDM for high speed dimmable visible light communications. IEEE Transactions on Communications, PP(99), 1. Wang, T. Q., & Huang, X. (2017). Fractional reverse polarity optical OFDM for high speed dimmable visible light communications. IEEE Transactions on Communications, PP(99), 1.
58.
go back to reference Bai, R., Wang, Q., & Wang, Z. (2017). Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems. Journal of Lightwave Technology, 35(17), 3680–3691.CrossRef Bai, R., Wang, Q., & Wang, Z. (2017). Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems. Journal of Lightwave Technology, 35(17), 3680–3691.CrossRef
59.
go back to reference Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.CrossRef Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.CrossRef
60.
go back to reference Murata, N., Shimamoto, H., Kozawa, Y., & Umeda, Y. (2015). Performance evaluation of digital colour shift keying for visible light communications. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1374–1379). IEEE. Murata, N., Shimamoto, H., Kozawa, Y., & Umeda, Y. (2015). Performance evaluation of digital colour shift keying for visible light communications. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1374–1379). IEEE.
61.
go back to reference Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.CrossRef Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.CrossRef
62.
go back to reference Rajó, F. A. D., Guerra, V., Borges, J. A. R., Torres, J. R., & Perez-Jimenez, R. (2014). Color shift keying communication system with a modified PPM synchronization scheme. IEEE Photonics Technology Letters, 26(18), 1851–1854.CrossRef Rajó, F. A. D., Guerra, V., Borges, J. A. R., Torres, J. R., & Perez-Jimenez, R. (2014). Color shift keying communication system with a modified PPM synchronization scheme. IEEE Photonics Technology Letters, 26(18), 1851–1854.CrossRef
63.
go back to reference Farahneh, H., Mekhiel, C., Khalifeh, A., Farjow, W., & Fernando, X. (2016). Shadowing effects on visible light communication channels. In 2016 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–5). IEEE. Farahneh, H., Mekhiel, C., Khalifeh, A., Farjow, W., & Fernando, X. (2016). Shadowing effects on visible light communication channels. In 2016 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–5). IEEE.
64.
go back to reference Dong, Z., Shang, T., Gao, Y., & Li, Q. (2017). Study on VLC channel modeling under random shadowing. IEEE Photonics Journal, 9(6), 1–16. Dong, Z., Shang, T., Gao, Y., & Li, Q. (2017). Study on VLC channel modeling under random shadowing. IEEE Photonics Journal, 9(6), 1–16.
65.
go back to reference Sewaiwar, A., Tiwari, S. V., & Chung, Y. H. (2015). Mobility support for full-duplex multiuser bidirectional VLC networks. IEEE Photonics Journal, 7(6), 1–9. Sewaiwar, A., Tiwari, S. V., & Chung, Y. H. (2015). Mobility support for full-duplex multiuser bidirectional VLC networks. IEEE Photonics Journal, 7(6), 1–9.
66.
go back to reference Burton, A., Minh, H. L., Ghasemlooy, Z., & Rajbhandari, S (2012). A study of LED lumination uniformity with mobility for visible light communications. In 2012 international workshop on optical wireless communications (IWOW) (pp. 1–3). IEEE. Burton, A., Minh, H. L., Ghasemlooy, Z., & Rajbhandari, S (2012). A study of LED lumination uniformity with mobility for visible light communications. In 2012 international workshop on optical wireless communications (IWOW) (pp. 1–3). IEEE.
67.
go back to reference Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465–1473.CrossRef Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465–1473.CrossRef
68.
go back to reference Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R., & Ciaramella, E. (2012). 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 20(26), B501–B506.CrossRef Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R., & Ciaramella, E. (2012). 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 20(26), B501–B506.CrossRef
69.
go back to reference Tsonev, D., Sinanovic, S., & Haas, H. (2013). Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. Journal of Lightwave Technology, 31(18), 3064–3076.CrossRef Tsonev, D., Sinanovic, S., & Haas, H. (2013). Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. Journal of Lightwave Technology, 31(18), 3064–3076.CrossRef
70.
go back to reference Sheu, J.-S., Li, B.-J., & Lain, J.-K. (2017). LED non-linearity mitigation techniques for optical OFDM-based visible light communications. IET Optoelectronics, 11(6), 259–264.CrossRef Sheu, J.-S., Li, B.-J., & Lain, J.-K. (2017). LED non-linearity mitigation techniques for optical OFDM-based visible light communications. IET Optoelectronics, 11(6), 259–264.CrossRef
71.
go back to reference He, C., & Armstrong, J. (2017). Clipping noise mitigation in optical OFDM systems. IEEE Communications Letters, 21(3), 548–551.CrossRef He, C., & Armstrong, J. (2017). Clipping noise mitigation in optical OFDM systems. IEEE Communications Letters, 21(3), 548–551.CrossRef
72.
go back to reference Zhou, J., Zhang, Z., Zhang, T., Guo, M., Tang, X., Wang, Z., et al. (2016). A combined PAPR-reduction technique for asymmetrically clipped optical OFDM system. Optics Communications, 366, 451–456.CrossRef Zhou, J., Zhang, Z., Zhang, T., Guo, M., Tang, X., Wang, Z., et al. (2016). A combined PAPR-reduction technique for asymmetrically clipped optical OFDM system. Optics Communications, 366, 451–456.CrossRef
73.
go back to reference Singh, V. K., & Dalal, U. D. (2017). A Fast Hartley Transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation. Optics Communications, 400, 128–135.CrossRef Singh, V. K., & Dalal, U. D. (2017). A Fast Hartley Transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation. Optics Communications, 400, 128–135.CrossRef
74.
go back to reference Xiao, W., Deng, H., Li, Y., & Jiang, S. (2017). PAPR reduction in VLC-OFDM system using a combination of shuffled frog leaping algorithm and hill-climbing algorithm. Wireless Personal Communications, 97(3), 3757–3771.CrossRef Xiao, W., Deng, H., Li, Y., & Jiang, S. (2017). PAPR reduction in VLC-OFDM system using a combination of shuffled frog leaping algorithm and hill-climbing algorithm. Wireless Personal Communications, 97(3), 3757–3771.CrossRef
75.
go back to reference Zafar, F., Karunatilaka, D., & Parthiban, R. (2015). Dimming schemes for visible light communication: the state of research. IEEE Wireless Communications, 22(2), 29–35.CrossRef Zafar, F., Karunatilaka, D., & Parthiban, R. (2015). Dimming schemes for visible light communication: the state of research. IEEE Wireless Communications, 22(2), 29–35.CrossRef
76.
go back to reference Wang, Q., Wang, Z., & Dai, L. (2015). Asymmetrical hybrid optical OFDM for visible light communications with dimming control. IEEE Photonics Technology Letters, 27(9), 974–977.CrossRef Wang, Q., Wang, Z., & Dai, L. (2015). Asymmetrical hybrid optical OFDM for visible light communications with dimming control. IEEE Photonics Technology Letters, 27(9), 974–977.CrossRef
77.
go back to reference Chung, Y. H., & Oh, S. (2013). Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light. In 2013 international symposium on intelligent signal processing and communications systems (ISPACS) (pp. 749–752). IEEE. Chung, Y. H., & Oh, S. (2013). Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light. In 2013 international symposium on intelligent signal processing and communications systems (ISPACS) (pp. 749–752). IEEE.
78.
go back to reference Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 2012 8th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–6). IEEE. Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 2012 8th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–6). IEEE.
79.
go back to reference Islim, M. S., Videv, S., Safari, M., Xie, E., McKendry, J. J. D., Gu, E., Dawson, M. D., & Haas, H. (2018). The impact of solar irradiance on visible light communications. Journal of Lightwave Technology, 36(12), 2376–2386. Islim, M. S., Videv, S., Safari, M., Xie, E., McKendry, J. J. D., Gu, E., Dawson, M. D., & Haas, H. (2018). The impact of solar irradiance on visible light communications. Journal of Lightwave Technology, 36(12), 2376–2386.
80.
go back to reference Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.CrossRef Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.CrossRef
81.
go back to reference Lin, B., Tang, X., Yang, H., Ghassemlooy, Z., Zhang, S., Li, Y., et al. (2016). Experimental demonstration of IFDMA for uplink visible light communication. IEEE Photonics Technology Letters, 28(20), 2218–2220.CrossRef Lin, B., Tang, X., Yang, H., Ghassemlooy, Z., Zhang, S., Li, Y., et al. (2016). Experimental demonstration of IFDMA for uplink visible light communication. IEEE Photonics Technology Letters, 28(20), 2218–2220.CrossRef
82.
go back to reference Alresheedi, M. T., Hussein, A. T., & Elmirghani, J. M. H. (2017). Uplink design in VLC systems with IR sources and beam steering. IET Communications, 11(3), 311–317.CrossRef Alresheedi, M. T., Hussein, A. T., & Elmirghani, J. M. H. (2017). Uplink design in VLC systems with IR sources and beam steering. IET Communications, 11(3), 311–317.CrossRef
Metadata
Title
A Comprehensive Survey of Visible Light Communication: Potential and Challenges
Authors
Sanjeev Kumar
Preeti Singh
Publication date
20-05-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06616-3

Other articles of this Issue 2/2019

Wireless Personal Communications 2/2019 Go to the issue