Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 5/2020

10-03-2020 | Original Article

A computational analysis of the effect of supporting organs on predicted vesical pressure in stress urinary incontinence

Authors: Mojtaba Barzegari, Bahman Vahidi, Mohammad Reza Safarinejad, Mahtab Ebad

Published in: Medical & Biological Engineering & Computing | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stress urinary incontinence (SUI) or urine leakage from urethra occurs due to an increase in abdominal pressure resulting from stress like a cough or jumping height. SUI is more frequent among post-menopausal women. In the absence of bladder contraction, vesical pressure exceeds urethral pressure leading to urine leakage. The main aim of this study is to utilize fluid-structure interaction techniques to model bladder and urethra computationally under an external pressure like sneezing. Both models have been developed with linear elastic properties for the bladder wall while the patient model has also been simulated utilizing the Mooney-Rivlin solid model. The results show a good agreement between the clinical data and the predicted values of the computational models, specifically the pressure at the center of the bladder. There is 1.3% difference between the predicted vesical pressure and the vesical pressure obtained from urodynamic tests. It can be concluded that the accuracy of the predicted pressure in the center of the bladder is significantly higher for the simulation assuming nonlinear material property (hyperelastic) for the bladder in comparison to the accuracy of the linear elastic model. The model is beneficial for exploring treatment solutions for SUI disorder.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wilson L, Brown JS, Shin GP, Luc K-O, Subak LL (2001) Annual direct cost of urinary incontinence. Obstet Gynecol 98:398–406PubMed Wilson L, Brown JS, Shin GP, Luc K-O, Subak LL (2001) Annual direct cost of urinary incontinence. Obstet Gynecol 98:398–406PubMed
2.
go back to reference Hardy LA, Chang CH, Myers EM, Kennelly MJ, Fried NM (2017) Computer simulations of thermal tissue remodeling during transvaginal and transurethral laser treatment of female stress urinary incontinence. Lasers Surg Med 49:198–205CrossRef Hardy LA, Chang CH, Myers EM, Kennelly MJ, Fried NM (2017) Computer simulations of thermal tissue remodeling during transvaginal and transurethral laser treatment of female stress urinary incontinence. Lasers Surg Med 49:198–205CrossRef
3.
go back to reference Dias N, Peng Y, Khavari R, Nakib NA, Sweet RM, Timm GW et al (2017) Pelvic floor dynamics during high-impact athletic activities: a computational modeling study. Clin Biomech (Bristol, Avon) 41:20–27CrossRef Dias N, Peng Y, Khavari R, Nakib NA, Sweet RM, Timm GW et al (2017) Pelvic floor dynamics during high-impact athletic activities: a computational modeling study. Clin Biomech (Bristol, Avon) 41:20–27CrossRef
4.
go back to reference Enhorning G (1961) Simultaneous recording of intravesical and intra-urethral pressure. Acta Chir Scand:1–68 Enhorning G (1961) Simultaneous recording of intravesical and intra-urethral pressure. Acta Chir Scand:1–68
5.
go back to reference Petros PEP, Ulmsten UI (1990) An integral theory of female urinary incontinence: experimental and clinical considerations. Acta Obstet Gynecol Scand 69:7–31CrossRef Petros PEP, Ulmsten UI (1990) An integral theory of female urinary incontinence: experimental and clinical considerations. Acta Obstet Gynecol Scand 69:7–31CrossRef
6.
go back to reference Ashton-Miller J, DeLANCEY JO (2014) Functional anatomy of the female pelvic floor. In: Bø K, Berghmans B, Mørkved S, van Kampen M (eds) Evidence based physical therapy for the pelvic floor—bridging science and clinical practice, pp 19–33 Ashton-Miller J, DeLANCEY JO (2014) Functional anatomy of the female pelvic floor. In: Bø K, Berghmans B, Mørkved S, van Kampen M (eds) Evidence based physical therapy for the pelvic floor—bridging science and clinical practice, pp 19–33
7.
go back to reference Bhattarai A, Staat M (2018) Modelling of soft connective tissues to investigate female pelvic floor dysfunctions. Comput Math Methods Med 2018 Bhattarai A, Staat M (2018) Modelling of soft connective tissues to investigate female pelvic floor dysfunctions. Comput Math Methods Med 2018
8.
go back to reference Peng Y, Miller BD, Boone TB, Zhang Y (2018) Modern theories of pelvic floor support. Curr Urol Rep 19:9CrossRef Peng Y, Miller BD, Boone TB, Zhang Y (2018) Modern theories of pelvic floor support. Curr Urol Rep 19:9CrossRef
9.
go back to reference Kim K-J (1994) Biomedical analyses of female stress urinary incontinence: University of Michigan Kim K-J (1994) Biomedical analyses of female stress urinary incontinence: University of Michigan
10.
go back to reference Haridas B, Hong H, Minoguchi R, Owens S, Osborn T (2006) PelvicSim—a computational-experimental system for biomechanical evaluation of female pelvic floor organ disorders and associated minimally invasive interventions. Stud Health Technol Inf 119:182–187 Haridas B, Hong H, Minoguchi R, Owens S, Osborn T (2006) PelvicSim—a computational-experimental system for biomechanical evaluation of female pelvic floor organ disorders and associated minimally invasive interventions. Stud Health Technol Inf 119:182–187
11.
go back to reference Spirka T, Kenton K, Brubaker L, Damaser MS (2013) Effect of material properties on predicted vesical pressure during a cough in a simplified computational model of the bladder and urethra. Ann Biomed Eng 41:185–194CrossRef Spirka T, Kenton K, Brubaker L, Damaser MS (2013) Effect of material properties on predicted vesical pressure during a cough in a simplified computational model of the bladder and urethra. Ann Biomed Eng 41:185–194CrossRef
12.
go back to reference Vahidi B, Fatouraee N (2007) Mathematical modeling of the ureteral peristaltic flow with fluid structure interaction. Measurements 5:6 Vahidi B, Fatouraee N (2007) Mathematical modeling of the ureteral peristaltic flow with fluid structure interaction. Measurements 5:6
13.
go back to reference Vahidi B, Fatouraee N (2012) A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data. J Theor Biol 298:42–50CrossRef Vahidi B, Fatouraee N (2012) A biomechanical simulation of ureteral flow during peristalsis using intraluminal morphometric data. J Theor Biol 298:42–50CrossRef
14.
go back to reference Vahidi B, Fatouraee N, Imanparast A, Moghadam AN (2011) A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng 133:031004CrossRef Vahidi B, Fatouraee N, Imanparast A, Moghadam AN (2011) A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng 133:031004CrossRef
15.
go back to reference Damaser MS, Lehman SL (1995) The effect of urinary bladder shape on its mechanics during filling. J Biomech 28:725–732CrossRef Damaser MS, Lehman SL (1995) The effect of urinary bladder shape on its mechanics during filling. J Biomech 28:725–732CrossRef
16.
go back to reference Zhang Y, Kim S, Erdman AG, Roberts KP, Timm GW (2009) Feasibility of using a computer modeling approach to study SUI induced by landing a jump. Ann Biomed Eng 37:1425–1433CrossRef Zhang Y, Kim S, Erdman AG, Roberts KP, Timm GW (2009) Feasibility of using a computer modeling approach to study SUI induced by landing a jump. Ann Biomed Eng 37:1425–1433CrossRef
17.
go back to reference van Leijsen SAL, Kluivers KB, Mol BWJ, Broekhuis SR, Milani FL, Vaart CHVD et al (2009) Protocol for the value of urodynamics prior to stress incontinence surgery (VUSIS) study: a multicenter randomized controlled trial to assess the cost effectiveness of urodynamics in women with symptoms of stress urinary incontinence in whom surgical treatment is considered. BMC Women's Health 9:22CrossRef van Leijsen SAL, Kluivers KB, Mol BWJ, Broekhuis SR, Milani FL, Vaart CHVD et al (2009) Protocol for the value of urodynamics prior to stress incontinence surgery (VUSIS) study: a multicenter randomized controlled trial to assess the cost effectiveness of urodynamics in women with symptoms of stress urinary incontinence in whom surgical treatment is considered. BMC Women's Health 9:22CrossRef
18.
go back to reference Drake R, Vogl AW, Mitchell AW (2009) Gray’s Anatomy for Students-Rental: With STUDENT CONSULT Online Access: Elsevier Health Sciences. Drake R, Vogl AW, Mitchell AW (2009) Gray’s Anatomy for Students-Rental: With STUDENT CONSULT Online Access: Elsevier Health Sciences.
19.
go back to reference Netter FH (2006) Atlas of human anatomy, vol 548. Saunders, Elsevier, Philadelphia, p 547 Netter FH (2006) Atlas of human anatomy, vol 548. Saunders, Elsevier, Philadelphia, p 547
20.
go back to reference DeLancey JO (1997) The pathophysiology of stress urinary incontinence in women and its implications for surgical treatment. World J Urol 15:268–274CrossRef DeLancey JO (1997) The pathophysiology of stress urinary incontinence in women and its implications for surgical treatment. World J Urol 15:268–274CrossRef
21.
go back to reference Delancey JO, Ashton-miller JA (2004) Pathophysiology of adult urinary incontinence. Gastroenterology 126:S23–S32CrossRef Delancey JO, Ashton-miller JA (2004) Pathophysiology of adult urinary incontinence. Gastroenterology 126:S23–S32CrossRef
22.
go back to reference Sampselle CM, DeLancey JO (1998) Anatomy of female continence. Journal of WOCN 25:63–74PubMed Sampselle CM, DeLancey JO (1998) Anatomy of female continence. Journal of WOCN 25:63–74PubMed
23.
go back to reference Chan L, The S, Titus J, Tse V (2005) P14. 02: The value of bladder wall thickness measurement in the assessment of overactive bladder syndrome. Ultrasound Obstet Gynecol 26:460–460CrossRef Chan L, The S, Titus J, Tse V (2005) P14. 02: The value of bladder wall thickness measurement in the assessment of overactive bladder syndrome. Ultrasound Obstet Gynecol 26:460–460CrossRef
24.
go back to reference Backman K (1971) Effective urethral diameter, Hydrodynamics of Micturition. Charles C. Thomas, Springfield, p 250 Backman K (1971) Effective urethral diameter, Hydrodynamics of Micturition. Charles C. Thomas, Springfield, p 250
25.
go back to reference Hosein RA, Griffiths DJ (1990) Computer simulation of the neural control of bladder and urethra. Neurourol Urodyn 9:601–618CrossRef Hosein RA, Griffiths DJ (1990) Computer simulation of the neural control of bladder and urethra. Neurourol Urodyn 9:601–618CrossRef
26.
go back to reference Janda Š, Van Der Helm FC, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech 36:749–757CrossRef Janda Š, Van Der Helm FC, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech 36:749–757CrossRef
27.
go back to reference d'Aulignac D, Martins J, Pires E, Mascarenhas T, Jorge RN (2005) A shell finite element model of the pelvic floor muscles. Comput Methods Biomech Biomed Eng 8:339–347CrossRef d'Aulignac D, Martins J, Pires E, Mascarenhas T, Jorge RN (2005) A shell finite element model of the pelvic floor muscles. Comput Methods Biomech Biomed Eng 8:339–347CrossRef
28.
go back to reference (2019) R. ANSYS Mechanical, Help System, Explicit Dynamics Analysis Guide, 7.9.5, ANSYS, Inc (2019) R. ANSYS Mechanical, Help System, Explicit Dynamics Analysis Guide, 7.9.5, ANSYS, Inc
29.
go back to reference Bastiaanssen E, Van Leeuwen J, Vanderschoot J, Redert P (1996) A myocybernetic model of the lower urinary tract. J Theor Biol 178:113–133CrossRef Bastiaanssen E, Van Leeuwen J, Vanderschoot J, Redert P (1996) A myocybernetic model of the lower urinary tract. J Theor Biol 178:113–133CrossRef
30.
go back to reference Yamada HS (1970) In: Evans FG (ed) Strength of biological materials. Williams and Wilkins, Baltimore Yamada HS (1970) In: Evans FG (ed) Strength of biological materials. Williams and Wilkins, Baltimore
31.
go back to reference Bakken L, Anderson P (1967) The complete equation of state handbook. Sandia Corporation SCL-TM-67-118 Bakken L, Anderson P (1967) The complete equation of state handbook. Sandia Corporation SCL-TM-67-118
32.
go back to reference Griffiths D (1969) Urethral elasticity and micturition hydrodynamics in females. Med Biol Eng 7:201–215CrossRef Griffiths D (1969) Urethral elasticity and micturition hydrodynamics in females. Med Biol Eng 7:201–215CrossRef
33.
go back to reference Spángberg A, Terió H, Engberg A, Ask P (1989) Quantification of urethral function based on Griffiths’ model of flow through elastic tubes. Neurourol Urodyn 8:29–52CrossRef Spángberg A, Terió H, Engberg A, Ask P (1989) Quantification of urethral function based on Griffiths’ model of flow through elastic tubes. Neurourol Urodyn 8:29–52CrossRef
34.
go back to reference Bastiaanssen E, Vanderschoot J, Van Leeuwen J (1996) State-space analysis of a myocybernetic model of the lower urinary tract. J Theor Biol 180:215–227CrossRef Bastiaanssen E, Vanderschoot J, Van Leeuwen J (1996) State-space analysis of a myocybernetic model of the lower urinary tract. J Theor Biol 180:215–227CrossRef
35.
go back to reference Griffiths D (1971) Hydrodynamics of male micturition—I theory of steady flow through elastic-walled tubes. Med Biol Eng 9:581–588CrossRef Griffiths D (1971) Hydrodynamics of male micturition—I theory of steady flow through elastic-walled tubes. Med Biol Eng 9:581–588CrossRef
36.
go back to reference Horak M, Křen J (2003) Mathematical model of the male urinary tract. Math Comput Simul 61:573–581CrossRef Horak M, Křen J (2003) Mathematical model of the male urinary tract. Math Comput Simul 61:573–581CrossRef
37.
go back to reference van Mastrigt R, Griffiths D (1986) An evaluation of contractility parameters determined from isometric contractions and micturition studies. Urol Res 14:45–52CrossRef van Mastrigt R, Griffiths D (1986) An evaluation of contractility parameters determined from isometric contractions and micturition studies. Urol Res 14:45–52CrossRef
38.
go back to reference Fielding JR, Griffiths D, Versi E, Mulkern R, Lee M, Jolesz F (1998) MR imaging of pelvic floor continence mechanisms in the supine and sitting positions. AJR Am J Roentgenol 171:1607–1610CrossRef Fielding JR, Griffiths D, Versi E, Mulkern R, Lee M, Jolesz F (1998) MR imaging of pelvic floor continence mechanisms in the supine and sitting positions. AJR Am J Roentgenol 171:1607–1610CrossRef
39.
go back to reference Lotz HT, Remeijer P, van Herk M, Lebesque JV, de Bois JA, Zijp LJ, Moonen LM (2004) A model to predict bladder shapes from changes in bladder and rectal filling. Med Phys 31:1415–1423CrossRef Lotz HT, Remeijer P, van Herk M, Lebesque JV, de Bois JA, Zijp LJ, Moonen LM (2004) A model to predict bladder shapes from changes in bladder and rectal filling. Med Phys 31:1415–1423CrossRef
Metadata
Title
A computational analysis of the effect of supporting organs on predicted vesical pressure in stress urinary incontinence
Authors
Mojtaba Barzegari
Bahman Vahidi
Mohammad Reza Safarinejad
Mahtab Ebad
Publication date
10-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 5/2020
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-020-02148-2

Other articles of this Issue 5/2020

Medical & Biological Engineering & Computing 5/2020 Go to the issue

Premium Partner