Skip to main content
Top
Published in: Meccanica 1-2/2019

17-12-2018

A computational framework for fluid–porous structure interaction with large structural deformation

Authors: Rana Zakerzadeh, Paolo Zunino

Published in: Meccanica | Issue 1-2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study the effect of poroelasticity on fluid–structure interaction. More precisely, we analyze the role of fluid flow through a deformable porous matrix in the energy dissipation behavior of a poroelastic structure. For this purpose, we develop and use a nonlinear poroelastic computational model and apply it to the fluid–structure interaction simulations. We discretize the problem by means of the finite element method for the spatial approximation and using finite differences in time. The numerical discretization leads to a system of non-linear equations that are solved by Newton’s method. We adopt a moving mesh algorithm, based on the Arbitrary Lagrangian–Eulerian method to handle large deformations of the structure. To reduce the computational cost, the coupled problem of free fluid, porous media flow and solid mechanics is split among its components and solved using a partitioned approach. Numerical results show that the flow through the porous matrix is responsible for generating a hysteresis loop in the stress versus displacement diagrams of the poroelastic structure. The sensitivity of this effect with respect to the parameters of the problem is also analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chapelle D et al (2009) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46(1):91–101MathSciNetMATHCrossRef Chapelle D et al (2009) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46(1):91–101MathSciNetMATHCrossRef
2.
go back to reference Chabiniok R et al (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2):1–24CrossRef Chabiniok R et al (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2):1–24CrossRef
3.
go back to reference Calo VM et al (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1):161–177MathSciNetMATHCrossRef Calo VM et al (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1):161–177MathSciNetMATHCrossRef
4.
go back to reference Feenstra PH et al (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3):263–276CrossRef Feenstra PH et al (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3):263–276CrossRef
5.
go back to reference Badia S et al (2009) Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J Comput Phys 228(21):7986–8014ADSMathSciNetMATHCrossRef Badia S et al (2009) Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J Comput Phys 228(21):7986–8014ADSMathSciNetMATHCrossRef
6.
go back to reference Koshiba N et al (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129(3):374–385 Koshiba N et al (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129(3):374–385
7.
go back to reference McCutchen CW (1982) Cartilage is poroelastic, not viscoelastic (including and exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time). J Biomech 15(4):325–327CrossRef McCutchen CW (1982) Cartilage is poroelastic, not viscoelastic (including and exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time). J Biomech 15(4):325–327CrossRef
8.
go back to reference Yang Z et al (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1):7–16MathSciNetCrossRef Yang Z et al (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1):7–16MathSciNetCrossRef
9.
go back to reference Armstrong MH et al (2016) A finite element model for mixed porohyperelasticity with transport, swelling, and growth. PLoS ONE 11(4):e0152806CrossRef Armstrong MH et al (2016) A finite element model for mixed porohyperelasticity with transport, swelling, and growth. PLoS ONE 11(4):e0152806CrossRef
10.
go back to reference Goriely A et al (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14(5):931–965CrossRef Goriely A et al (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14(5):931–965CrossRef
11.
go back to reference Bukac M et al (2015) Effects of poroelasticity on fluid–structure interaction in arteries: a computational sensitivity study. In: Modeling the heart and the circulatory system. Springer, New York, pp 197–220 Bukac M et al (2015) Effects of poroelasticity on fluid–structure interaction in arteries: a computational sensitivity study. In: Modeling the heart and the circulatory system. Springer, New York, pp 197–220
12.
go back to reference Bazilevs Y et al (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetMATHCrossRef Bazilevs Y et al (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetMATHCrossRef
13.
go back to reference Bazilevs Y et al (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550ADSMathSciNetMATHCrossRef Bazilevs Y et al (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550ADSMathSciNetMATHCrossRef
15.
go back to reference Chepelenko GV (2015) Atherosclerosis regulation via media lipid-driven VSMC cholesterol efflux switch. Med Hypotheses 84(2):141–144CrossRef Chepelenko GV (2015) Atherosclerosis regulation via media lipid-driven VSMC cholesterol efflux switch. Med Hypotheses 84(2):141–144CrossRef
16.
go back to reference Smith E (1990) Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur Heart J 11(suppl E):72–81CrossRef Smith E (1990) Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur Heart J 11(suppl E):72–81CrossRef
17.
go back to reference Zakerzadeh R, Bukac M, Zunino P (2015) Computational analysis of energy distribution of coupled blood flow and arterial deformation. Int J Adv Eng Sci Appl Math 8(1):70–85MathSciNetMATHCrossRef Zakerzadeh R, Bukac M, Zunino P (2015) Computational analysis of energy distribution of coupled blood flow and arterial deformation. Int J Adv Eng Sci Appl Math 8(1):70–85MathSciNetMATHCrossRef
18.
go back to reference Burtschell B et al (2017) Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation. Comput Struct 182:313–324CrossRef Burtschell B et al (2017) Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation. Comput Struct 182:313–324CrossRef
19.
go back to reference Vuong AT et al (2015) A general approach for modeling interacting flow through porous media under finite deformations. Comput Methods Appl Mech Eng 283:1240–1259ADSMathSciNetMATHCrossRef Vuong AT et al (2015) A general approach for modeling interacting flow through porous media under finite deformations. Comput Methods Appl Mech Eng 283:1240–1259ADSMathSciNetMATHCrossRef
20.
go back to reference Chapelle D et al (2014) General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes. Eur J Mech B Fluids 46:82–96MathSciNetMATHCrossRef Chapelle D et al (2014) General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes. Eur J Mech B Fluids 46:82–96MathSciNetMATHCrossRef
21.
go back to reference Balzani D, Deparis S, Fausten S, Forti D, Heinlein A, Klawonn A, Quarteroni A, Rheinbach O, Schröder J (2015) Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm.2756 CrossRef Balzani D, Deparis S, Fausten S, Forti D, Heinlein A, Klawonn A, Quarteroni A, Rheinbach O, Schröder J (2015) Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int J Numer Methods Biomed Eng. https://​doi.​org/​10.​1002/​cnm.​2756 CrossRef
22.
go back to reference Tricerri P et al (2015) Fluid–structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput Mech 55(3):479–498MathSciNetMATHCrossRef Tricerri P et al (2015) Fluid–structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput Mech 55(3):479–498MathSciNetMATHCrossRef
23.
go back to reference Bukač M et al (2015) Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput Methods Appl Mech Eng 292:138–170ADSMathSciNetCrossRefMATH Bukač M et al (2015) Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput Methods Appl Mech Eng 292:138–170ADSMathSciNetCrossRefMATH
24.
go back to reference Zakerzadeh R et al (2014) Fluid–structure interaction in arteries with a poroelastic wall model. In: 21st Iranian conference of biomedical engineering (ICBME) IEEE, pp 35–39 Zakerzadeh R et al (2014) Fluid–structure interaction in arteries with a poroelastic wall model. In: 21st Iranian conference of biomedical engineering (ICBME) IEEE, pp 35–39
25.
go back to reference Dunne T et al (2010) Numerical simulation of fluid–structure interaction based on monolithic variational formulations. In: Fundamental trends in fluid–structure interaction (contemporary challenges in mathematical fluid dynamics and its applications) vol 1, pp 1–75 Dunne T et al (2010) Numerical simulation of fluid–structure interaction based on monolithic variational formulations. In: Fundamental trends in fluid–structure interaction (contemporary challenges in mathematical fluid dynamics and its applications) vol 1, pp 1–75
26.
go back to reference Burman E et al (2014) Explicit strategies for incompressible fluid–structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. Int J Numer Methods Eng 97(10):739–758MathSciNetMATHCrossRef Burman E et al (2014) Explicit strategies for incompressible fluid–structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. Int J Numer Methods Eng 97(10):739–758MathSciNetMATHCrossRef
27.
28.
go back to reference Yang M et al (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24(7):587–597CrossRef Yang M et al (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24(7):587–597CrossRef
29.
go back to reference Taber LA et al (1996) Poroelastic plate and shell theories. In: Mechanics of poroelastic media. Springer, New York, pp 323–337 Taber LA et al (1996) Poroelastic plate and shell theories. In: Mechanics of poroelastic media. Springer, New York, pp 323–337
30.
32.
go back to reference Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96MathSciNetMATH Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96MathSciNetMATH
33.
go back to reference Biot MA (1956) Theory of propagation of elastic waves in a fluid–saturated porous solid. I. Low–frequency range. J Acoust Soc Am 28(2):168–178ADSMathSciNetCrossRef Biot MA (1956) Theory of propagation of elastic waves in a fluid–saturated porous solid. I. Low–frequency range. J Acoust Soc Am 28(2):168–178ADSMathSciNetCrossRef
34.
go back to reference Discacciati M et al (2009) Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Revista Matemática Complutense 22(2):315–426MathSciNetMATHCrossRef Discacciati M et al (2009) Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Revista Matemática Complutense 22(2):315–426MathSciNetMATHCrossRef
35.
go back to reference Quaini A et al (2007) A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math Models Methods Appl Sci 17(6):957–983MathSciNetMATHCrossRef Quaini A et al (2007) A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math Models Methods Appl Sci 17(6):957–983MathSciNetMATHCrossRef
36.
go back to reference Uzuoka R et al (2012) Dynamics of unsaturated poroelastic solids at finite strain. Int J Numer Anal Methods Geomech 36(13):1535–1573CrossRef Uzuoka R et al (2012) Dynamics of unsaturated poroelastic solids at finite strain. Int J Numer Anal Methods Geomech 36(13):1535–1573CrossRef
38.
40.
go back to reference Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRef Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRef
41.
go back to reference Burman E et al (2009) Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput Methods Appl Mech Eng 198(5–8):766–784ADSMathSciNetMATHCrossRef Burman E et al (2009) Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput Methods Appl Mech Eng 198(5–8):766–784ADSMathSciNetMATHCrossRef
42.
go back to reference Quarteroni A et al (2010) Numerical mathematics, vol 37. Springer, New YorkMATH Quarteroni A et al (2010) Numerical mathematics, vol 37. Springer, New YorkMATH
43.
go back to reference Razzaq M et al (2009) Numerical simulation and benchmarking of fluid structure interaction with application to hemodynamics. Techn Univ, Fak für Mathematik Razzaq M et al (2009) Numerical simulation and benchmarking of fluid structure interaction with application to hemodynamics. Techn Univ, Fak für Mathematik
44.
go back to reference Jendoubi A et al (2016) A simple mesh-update procedure for fluid–structure interaction problems. Comput Struct 169:13–23CrossRef Jendoubi A et al (2016) A simple mesh-update procedure for fluid–structure interaction problems. Comput Struct 169:13–23CrossRef
46.
go back to reference Brooks AN et al (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259ADSMathSciNetMATHCrossRef Brooks AN et al (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259ADSMathSciNetMATHCrossRef
47.
go back to reference Ijiri T et al (2012) A kinematic approach for efficient and robust simulation of the cardiac beating motion. PLoS ONE 7(5):e36706ADSCrossRef Ijiri T et al (2012) A kinematic approach for efficient and robust simulation of the cardiac beating motion. PLoS ONE 7(5):e36706ADSCrossRef
48.
go back to reference Bukač M et al (2013) Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J Comput Phys 235:515–541ADSMathSciNetCrossRef Bukač M et al (2013) Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J Comput Phys 235:515–541ADSMathSciNetCrossRef
49.
go back to reference Ren H et al (2009) Poroelastic analysis of permeability effects in thinly layered porous media. Geophysics 74(6):N49–N54CrossRef Ren H et al (2009) Poroelastic analysis of permeability effects in thinly layered porous media. Geophysics 74(6):N49–N54CrossRef
50.
go back to reference Costi JJ et al (2008) Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33(16):1731CrossRef Costi JJ et al (2008) Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33(16):1731CrossRef
51.
go back to reference Cederbaum G et al (2000) Poroelastic structures. Elsevier, AmsterdamMATH Cederbaum G et al (2000) Poroelastic structures. Elsevier, AmsterdamMATH
52.
go back to reference Yeh F-H et al (1998) Dynamic behavior of a poroelastic slab subjected to uniformly distributed impulsive loading. Comput Struct 67(4):267–277MATHCrossRef Yeh F-H et al (1998) Dynamic behavior of a poroelastic slab subjected to uniformly distributed impulsive loading. Comput Struct 67(4):267–277MATHCrossRef
Metadata
Title
A computational framework for fluid–porous structure interaction with large structural deformation
Authors
Rana Zakerzadeh
Paolo Zunino
Publication date
17-12-2018
Publisher
Springer Netherlands
Published in
Meccanica / Issue 1-2/2019
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-00932-x

Other articles of this Issue 1-2/2019

Meccanica 1-2/2019 Go to the issue

Premium Partners