Skip to main content
Top
Published in: Engineering with Computers 4/2020

03-05-2019 | Original Article

A computational study of variable coefficients fractional advection–diffusion–reaction equations via implicit meshless spectral algorithm

Authors: Sirajul Haq, Manzoor Hussain, Abdul Ghafoor

Published in: Engineering with Computers | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a meshless spectral radial point interpolation method is proposed for the numerical solutions of a class of time-fractional advection–diffusion–reaction equations. The current approach utilizes meshless shape functions, having Kronecker delta function property, for approximation of spatial operators. Forward difference along with quadrature formula is used for tempered fractional derivative approximation in the framework of implicit time marching scheme. Assessment of the proposed method is made by applying to various concrete test problems having constant and variable coefficients. Approximation and function reproduction quality are measured via \({E}_{\infty }\), \({E}_{2}\) and \({E}_{\text {rms}}\) error norms. Comparison of simulated results is also made with available exact solutions as well as earlier reported works. Stability analysis of the proposed method is thoroughly discussed and computationally affirmed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference LHilfer R (2000) Applications of fractional calculus in physics. World Scientific, River Edge LHilfer R (2000) Applications of fractional calculus in physics. World Scientific, River Edge
2.
go back to reference Podlubny I (1999) Fractional differential equations. Academic, San Diego, p 198MATH Podlubny I (1999) Fractional differential equations. Academic, San Diego, p 198MATH
3.
go back to reference Fallahgoul HA, Focardi SM, Fabozzi FJ (2017) Fractional calculus and fractional processes with applications to financial economics: Theory and Applications. Elsevier, OxfordMATH Fallahgoul HA, Focardi SM, Fabozzi FJ (2017) Fractional calculus and fractional processes with applications to financial economics: Theory and Applications. Elsevier, OxfordMATH
4.
go back to reference Mainardi F (1997) Fractional calculus: Some basic problems in continuum and statistical mechanics. In: carpinteri A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics. Springer, New York, pp 291–348MATH Mainardi F (1997) Fractional calculus: Some basic problems in continuum and statistical mechanics. In: carpinteri A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics. Springer, New York, pp 291–348MATH
5.
go back to reference Fujita Y (1990) Cauchy problems of fractional order and stable processes. Jpn J Appl Math 7(3):459–476MathSciNetMATH Fujita Y (1990) Cauchy problems of fractional order and stable processes. Jpn J Appl Math 7(3):459–476MathSciNetMATH
7.
go back to reference Hilfer R (2000) Fractional diffusion based on Riemann-Liouville fractional derivative. J Phys Chem 104:3914–3917 Hilfer R (2000) Fractional diffusion based on Riemann-Liouville fractional derivative. J Phys Chem 104:3914–3917
8.
go back to reference Caputo M (1967) Linear models of dissipation whose \(Q\) is almost frequency independent, Part II. J R Astral Soc 13:529–539 Caputo M (1967) Linear models of dissipation whose \(Q\) is almost frequency independent, Part II. J R Astral Soc 13:529–539
9.
go back to reference Metzler JKR (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77MathSciNetMATH Metzler JKR (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77MathSciNetMATH
10.
go back to reference Schumer R, Benson DA, Meerschaert MM et al (2003) Fractal mobile/immobile solute transport. Water Resour Res 39(10):1296 Schumer R, Benson DA, Meerschaert MM et al (2003) Fractal mobile/immobile solute transport. Water Resour Res 39(10):1296
12.
go back to reference Akrami MH, Erjaee GH (2015) Examples of analytical solutions by means of Mittag-Leffler function of fractional Black-Scholes option pricing equations. Fract Calc Appl Anal 18(1):38–47MathSciNetMATH Akrami MH, Erjaee GH (2015) Examples of analytical solutions by means of Mittag-Leffler function of fractional Black-Scholes option pricing equations. Fract Calc Appl Anal 18(1):38–47MathSciNetMATH
13.
go back to reference Liu F, Zhuang P, Anh V et al (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191:12–20MathSciNetMATH Liu F, Zhuang P, Anh V et al (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191:12–20MathSciNetMATH
14.
go back to reference Tadjeran C, Meerschaert MM, Scheffler H-P (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213MathSciNetMATH Tadjeran C, Meerschaert MM, Scheffler H-P (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213MathSciNetMATH
15.
go back to reference Yuste S (2006) Weighted average finite difference metods for fractional diffusion equations. J Comput Phys 216(1):264–274MathSciNetMATH Yuste S (2006) Weighted average finite difference metods for fractional diffusion equations. J Comput Phys 216(1):264–274MathSciNetMATH
16.
go back to reference Gao G-H, Sun H-W (2015) Three-point combined compact difference schemes for time-fractional advectiondiffusion equations with smooth solutions. J Comput Phys 298:520–538MathSciNetMATH Gao G-H, Sun H-W (2015) Three-point combined compact difference schemes for time-fractional advectiondiffusion equations with smooth solutions. J Comput Phys 298:520–538MathSciNetMATH
17.
go back to reference Cui M (2015) Compact exponential scheme for the time fractional convectiondiffusion reaction equation with variable coefficients. J Comput Phys 280:143–163MathSciNetMATH Cui M (2015) Compact exponential scheme for the time fractional convectiondiffusion reaction equation with variable coefficients. J Comput Phys 280:143–163MathSciNetMATH
18.
go back to reference Chen Y, Wu Y, Cui Y et al (2010) Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J Comput Sci 1:146–149 Chen Y, Wu Y, Cui Y et al (2010) Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J Comput Sci 1:146–149
19.
go back to reference Saadatmandi A, Dehghan M, Azizi M-R (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simulat 17:4125–4136MathSciNetMATH Saadatmandi A, Dehghan M, Azizi M-R (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simulat 17:4125–4136MathSciNetMATH
20.
go back to reference Liu F, Zhuang P, Burrage K (2012) Numerical methods and analysis for a class of fractional advection dispersion models. Comput Math Appl 64:2990–3007MathSciNetMATH Liu F, Zhuang P, Burrage K (2012) Numerical methods and analysis for a class of fractional advection dispersion models. Comput Math Appl 64:2990–3007MathSciNetMATH
21.
go back to reference Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with application to computation fluid dynamics, II. Solutions to hyperbolic, parabolic, and elliptic partial differential equations. Comput Math Appl 19:149–161MathSciNet Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with application to computation fluid dynamics, II. Solutions to hyperbolic, parabolic, and elliptic partial differential equations. Comput Math Appl 19:149–161MathSciNet
22.
go back to reference Uddin M, Haq S (2011) RBF approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simulat 16(11):4208–4214MathSciNetMATH Uddin M, Haq S (2011) RBF approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simulat 16(11):4208–4214MathSciNetMATH
23.
go back to reference Haq S, Hussain M (2018) Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models. Appl Math Comput 335:248–263MathSciNetMATH Haq S, Hussain M (2018) Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models. Appl Math Comput 335:248–263MathSciNetMATH
25.
go back to reference Liu L, Yang H (2007) A paralleled element-free Galerkin analysis for structures with cyclic symmetry. Eng Comput 23(2):137–144 Liu L, Yang H (2007) A paralleled element-free Galerkin analysis for structures with cyclic symmetry. Eng Comput 23(2):137–144
26.
go back to reference Kia AD, Fallah N (2018) Comparison of enriched meshless finite volume and element free Galerkin methods for the analysis of heterogeneous media. Eng Comput 34(4):787–799 Kia AD, Fallah N (2018) Comparison of enriched meshless finite volume and element free Galerkin methods for the analysis of heterogeneous media. Eng Comput 34(4):787–799
28.
go back to reference Gu YT, Liu GR (2001) A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27:188–198MATH Gu YT, Liu GR (2001) A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27:188–198MATH
29.
go back to reference Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30:247–253MATH Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30:247–253MATH
30.
go back to reference Ling L, Schaback R (2008) Stable and convergent unsymmetric meshless collocation methods. SIAM J Numer Anal 46:1097–1115MathSciNetMATH Ling L, Schaback R (2008) Stable and convergent unsymmetric meshless collocation methods. SIAM J Numer Anal 46:1097–1115MathSciNetMATH
31.
go back to reference Kansa EJ, Hon YC (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39:123137MathSciNetMATH Kansa EJ, Hon YC (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39:123137MathSciNetMATH
32.
go back to reference Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation. Eng Comput 33(4):983–996 Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation. Eng Comput 33(4):983–996
35.
go back to reference Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12MathSciNetMATH Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12MathSciNetMATH
36.
go back to reference Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin
37.
go back to reference Shivanian E (2016) More accurate results for two-dimensional heat equation with Neumanns and non-classical boundary conditions. Eng Comput 32(4):729–743 Shivanian E (2016) More accurate results for two-dimensional heat equation with Neumanns and non-classical boundary conditions. Eng Comput 32(4):729–743
38.
go back to reference Rad JA, Rashedi K, Parand K et al (2017) The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem. Eng Comput 33:547–571 Rad JA, Rashedi K, Parand K et al (2017) The meshfree strong form methods for solving one dimensional inverse Cauchy-Stefan problem. Eng Comput 33:547–571
39.
go back to reference Shivanian E, Jafarabadi A (2018) Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90 Shivanian E, Jafarabadi A (2018) Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90
40.
go back to reference Shivanian E, Jafarabadi A (2018) Capillary formation in tumor angiogenesis through meshless weak and strong local radial point interpolation. Eng Comput 34(3):603–619 Shivanian E, Jafarabadi A (2018) Capillary formation in tumor angiogenesis through meshless weak and strong local radial point interpolation. Eng Comput 34(3):603–619
41.
go back to reference Hussain M, Haq S (2019) Meshless spectral method for solution of time-fractional coupled KdV equations. Appl Math Comput 341:321–334MathSciNetMATH Hussain M, Haq S (2019) Meshless spectral method for solution of time-fractional coupled KdV equations. Appl Math Comput 341:321–334MathSciNetMATH
42.
go back to reference Hussain Manzoor, Haq Sirajul, Ghafoor Abdul, Ali Ihteram. Numerical solution of time-fractional coupled viscous Burgers equations using meshfree spectral method. Comp Appl Math. Accepted (to appear) Hussain Manzoor, Haq Sirajul, Ghafoor Abdul, Ali Ihteram. Numerical solution of time-fractional coupled viscous Burgers equations using meshfree spectral method. Comp Appl Math. Accepted (to appear)
43.
go back to reference Hussain M, Haq S (2019) Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer. Int J Heat Mass Transf 129:1305–1316 Hussain M, Haq S (2019) Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer. Int J Heat Mass Transf 129:1305–1316
44.
go back to reference Micchelli CA (1986) Interpolation of scattered data: distance matrix and conditionally positive definite functions. Construct Approx 2:11–22MATH Micchelli CA (1986) Interpolation of scattered data: distance matrix and conditionally positive definite functions. Construct Approx 2:11–22MATH
45.
go back to reference Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, River EdgeMATH Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, River EdgeMATH
46.
go back to reference Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89:173–188 Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89:173–188
47.
go back to reference Fatahi H, Nadjafi JS, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209MathSciNetMATH Fatahi H, Nadjafi JS, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209MathSciNetMATH
48.
go back to reference Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to twodimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835MathSciNetMATH Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to twodimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835MathSciNetMATH
49.
go back to reference Shivanian E, Jafarabadi A (2017) Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442MATH Shivanian E, Jafarabadi A (2017) Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442MATH
50.
go back to reference Shivanian E, Jafarabadi A (2016) More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng Anal Bound Elem 72:42–54MathSciNetMATH Shivanian E, Jafarabadi A (2016) More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng Anal Bound Elem 72:42–54MathSciNetMATH
51.
go back to reference Shivanian E, Jafarabadi A (2017) An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. J Comput Appl Math 325:18–33MathSciNetMATH Shivanian E, Jafarabadi A (2017) An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. J Comput Appl Math 325:18–33MathSciNetMATH
52.
go back to reference Assari P, Dehghan M (2017) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444MathSciNetMATH Assari P, Dehghan M (2017) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444MathSciNetMATH
53.
go back to reference Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetMATH Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetMATH
54.
go back to reference Assari P, Dehghan M (2019) Application of thin plate splines for solving a class of boundary integral equations arisen from Laplaces equations with nonlinear boundary conditions. Int J Comput Math 96:170–198MathSciNet Assari P, Dehghan M (2019) Application of thin plate splines for solving a class of boundary integral equations arisen from Laplaces equations with nonlinear boundary conditions. Int J Comput Math 96:170–198MathSciNet
55.
go back to reference Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381MathSciNetMATH Assari P, Dehghan M (2018) A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. J Comput Appl Math 333:362–381MathSciNetMATH
56.
go back to reference Mardani A, Hooshmandasl MR, Heydari MH et al (2018) A meshless method for solving the time fractional advection-diffusion equation with variable coefficients. Comput Math Appl 75(1):122–133MathSciNetMATH Mardani A, Hooshmandasl MR, Heydari MH et al (2018) A meshless method for solving the time fractional advection-diffusion equation with variable coefficients. Comput Math Appl 75(1):122–133MathSciNetMATH
57.
go back to reference Zhuang P, Gu YT, Liu F et al (2011) Time-dependent fractional advectiondiffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88(13):1346–1362MATH Zhuang P, Gu YT, Liu F et al (2011) Time-dependent fractional advectiondiffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88(13):1346–1362MATH
58.
go back to reference Mehrdoust F, Sheikhani AHR, Mashoof M et al (2017) Block-pulse operational matrix method for solving fractional Black-Scholes equation. J Econ Stud 44(3):489–502 Mehrdoust F, Sheikhani AHR, Mashoof M et al (2017) Block-pulse operational matrix method for solving fractional Black-Scholes equation. J Econ Stud 44(3):489–502
59.
go back to reference Elsheikh AM, Elzaki TM (2015) Variation iteration method for solving porous medium equation. Int J Dev Res 5(6):4677–4680 Elsheikh AM, Elzaki TM (2015) Variation iteration method for solving porous medium equation. Int J Dev Res 5(6):4677–4680
Metadata
Title
A computational study of variable coefficients fractional advection–diffusion–reaction equations via implicit meshless spectral algorithm
Authors
Sirajul Haq
Manzoor Hussain
Abdul Ghafoor
Publication date
03-05-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00760-x

Other articles of this Issue 4/2020

Engineering with Computers 4/2020 Go to the issue