Skip to main content
Top

2020 | OriginalPaper | Chapter

A Concept for the Extension of the Assumed Stress Finite Element Method to Hyperelasticity

Authors : Nils Viebahn, Jörg Schröder, Peter Wriggers

Published in: Novel Finite Element Technologies for Solids and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The proposed work extends the well-known assumed stress elements to the framework of hyperelasticity. In order to obtain the constitutive relationship, a nonlinear set of equations is solved implicitly on element level. A numerical verification, where two assumed stress elements are compared to classical enhanced assumed strain elements, depicts the reliability and efficiency of the proposed concept. This work is closely related to the publication of Viebahn et al. (2019)

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andelfinger, U., & Ramm, E. (1993). EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering, 36, 1311–1337.CrossRef Andelfinger, U., & Ramm, E. (1993). EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering, 36, 1311–1337.CrossRef
go back to reference Atluri, S. N. (1973). On the hybrid stress finite element model in incremental analysis of large deflection problems. International Journal of Solids and Structures, 9, 1188–1191.CrossRef Atluri, S. N. (1973). On the hybrid stress finite element model in incremental analysis of large deflection problems. International Journal of Solids and Structures, 9, 1188–1191.CrossRef
go back to reference Babuška, I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179–192.MathSciNetCrossRef Babuška, I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179–192.MathSciNetCrossRef
go back to reference Bischoff, M., Ramm, E., & Braess, D. (1999). A class of equivalent enhanced assumed strain and hybrid stress finite elements. Computational Mechanics, 22, 443–449.CrossRef Bischoff, M., Ramm, E., & Braess, D. (1999). A class of equivalent enhanced assumed strain and hybrid stress finite elements. Computational Mechanics, 22, 443–449.CrossRef
go back to reference Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 8(2), 129–151.MathSciNetCrossRef Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 8(2), 129–151.MathSciNetCrossRef
go back to reference de Souza Neto, E. A., Peric, D., Huang, G. C., & Owen, D. R. J. (1995). Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Communications in Numerical Methods in Engineering, 11(11), 951–961. de Souza Neto, E. A., Peric, D., Huang, G. C., & Owen, D. R. J. (1995). Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Communications in Numerical Methods in Engineering, 11(11), 951–961.
go back to reference Djoko, J. K., Lamichhane, B. P., Reddy, B. P., & Wohlmuth, B. I. (2006). Conditions for equivalence between the Hu-Washizu and related formulations, and computational behavior in the incompressible limit. Computer Methods in Applied Mechanics and Engineering, 195, 4161–4178.MathSciNetCrossRef Djoko, J. K., Lamichhane, B. P., Reddy, B. P., & Wohlmuth, B. I. (2006). Conditions for equivalence between the Hu-Washizu and related formulations, and computational behavior in the incompressible limit. Computer Methods in Applied Mechanics and Engineering, 195, 4161–4178.MathSciNetCrossRef
go back to reference Fraejis de Veubeke, B. (1965). Stress analysis, chapter Displacement ant equilibrium models in finite element methods (pp. 145–197). John Wiley & Sons. Fraejis de Veubeke, B. (1965). Stress analysis, chapter Displacement ant equilibrium models in finite element methods (pp. 145–197). John Wiley & Sons.
go back to reference Glaser, S., & Armero, F. (1997). On the formulation of enhanced strain finite elements in finite deformations. Engineering Computations, 14, 759–791.CrossRef Glaser, S., & Armero, F. (1997). On the formulation of enhanced strain finite elements in finite deformations. Engineering Computations, 14, 759–791.CrossRef
go back to reference Hellinger, E. (1913). Encyklopädie der mathematischen wissenschaften mit einschluss ihrer anwendungen. In Encyklop\(\ddot{d}\)ie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 4. Hellinger, E. (1913). Encyklopädie der mathematischen wissenschaften mit einschluss ihrer anwendungen. In Encyklop\(\ddot{d}\)ie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 4.
go back to reference Hu, H. C. (1955). On some variational principles in the theory of elasticity and the theory of plasticity. Science Sinica, 4, 33–54.MATH Hu, H. C. (1955). On some variational principles in the theory of elasticity and the theory of plasticity. Science Sinica, 4, 33–54.MATH
go back to reference Krischok, A., & Linder, C. (2016). On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. International Journal for Numerical Methods in Engineering, 106, 278–297.MathSciNetCrossRef Krischok, A., & Linder, C. (2016). On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. International Journal for Numerical Methods in Engineering, 106, 278–297.MathSciNetCrossRef
go back to reference Ladyzhenskaya, O. (1969). The mathematical theory of viscous incompressible flow (Vol. 76). Gordon and Breach New York. Ladyzhenskaya, O. (1969). The mathematical theory of viscous incompressible flow (Vol. 76). Gordon and Breach New York.
go back to reference Ogden, R. W. (1984). Non-linear elastic deformations. Dover Publications. Ogden, R. W. (1984). Non-linear elastic deformations. Dover Publications.
go back to reference Pantuso, D., & Bathe, K.-J. (1995). A four-node quadrilateral mixed-interpolated element for solids and fluids. Mathematical Models and Methods in Applied Sciences (M3AS), 5(8), 1113–1128. Pantuso, D., & Bathe, K.-J. (1995). A four-node quadrilateral mixed-interpolated element for solids and fluids. Mathematical Models and Methods in Applied Sciences (M3AS), 5(8), 1113–1128.
go back to reference Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumed stress distribution. AIAA Journal, 20, 1333–1336.CrossRef Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumed stress distribution. AIAA Journal, 20, 1333–1336.CrossRef
go back to reference Pian, T. H. H., & Chen, D.-P. (1982). Alternative ways for formulation of hybrid stress elements. International Journal for Numerical Methods in Engineering, 18, 1679–1684.CrossRef Pian, T. H. H., & Chen, D.-P. (1982). Alternative ways for formulation of hybrid stress elements. International Journal for Numerical Methods in Engineering, 18, 1679–1684.CrossRef
go back to reference Pian, T. H. H., & Sumihara, K. (1984). A rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20, 1685–1695.CrossRef Pian, T. H. H., & Sumihara, K. (1984). A rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20, 1685–1695.CrossRef
go back to reference Pian, T. H. H., & Tong, P. (1986). Relations between incompatible displacement model and hybrid stress model. International Journal for Numerical Methods in Engineering, 22, 173–181.MathSciNetCrossRef Pian, T. H. H., & Tong, P. (1986). Relations between incompatible displacement model and hybrid stress model. International Journal for Numerical Methods in Engineering, 22, 173–181.MathSciNetCrossRef
go back to reference Prange, G. (1916). Das Extremum der Formänderungsarbeit. Technische Hochschule Hannover: Habilitationsschrift. Prange, G. (1916). Das Extremum der Formänderungsarbeit. Technische Hochschule Hannover: Habilitationsschrift.
go back to reference Schröder, J., Klaas, O., Stein, E., & Miehe, C. (1997). A physically nonlinear dual mixed finite element formulation. Computer Methods in Applied Mechanics and Engineering, 144, 77–92.CrossRef Schröder, J., Klaas, O., Stein, E., & Miehe, C. (1997). A physically nonlinear dual mixed finite element formulation. Computer Methods in Applied Mechanics and Engineering, 144, 77–92.CrossRef
go back to reference Schröder, J., Igelbüscher, M., Schwarz, A., & Starke, G. (2017). A Prange-Hellinger-Reissner type finite element formulation for small strain elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 317, 400–418.MathSciNetCrossRef Schröder, J., Igelbüscher, M., Schwarz, A., & Starke, G. (2017). A Prange-Hellinger-Reissner type finite element formulation for small strain elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 317, 400–418.MathSciNetCrossRef
go back to reference Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.MathSciNetCrossRef Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.MathSciNetCrossRef
go back to reference Simo, J. C., Armero, F., & Taylor, R. L. (1993). Assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.MathSciNetCrossRef Simo, J. C., Armero, F., & Taylor, R. L. (1993). Assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.MathSciNetCrossRef
go back to reference Simo, J. C., Kennedy, J. G., & Taylor, R. L. (1989). Complementary mixed finite element formulations for elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 74, 177–206.MathSciNetCrossRef Simo, J. C., Kennedy, J. G., & Taylor, R. L. (1989). Complementary mixed finite element formulations for elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 74, 177–206.MathSciNetCrossRef
go back to reference Wall, W. A., Bischoff, M., & Ramm, E. (2000). A deformation dependent stabilization technique, exemplified by eas elements at large strains. Computer Methods in Applied Mechanics and Engineering, 188, 859–871.CrossRef Wall, W. A., Bischoff, M., & Ramm, E. (2000). A deformation dependent stabilization technique, exemplified by eas elements at large strains. Computer Methods in Applied Mechanics and Engineering, 188, 859–871.CrossRef
go back to reference Washizu, K. (1955, March). On the variational principles of elasticity and plasticity. Technical Report 25–18, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge. Washizu, K. (1955, March). On the variational principles of elasticity and plasticity. Technical Report 25–18, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge.
go back to reference Wilson, E. L., Taylor, R. L., Doherty, W. P., & Ghabaussi, J. (1973). Incompatible displacement models. In S. J. Fenves et al. (Eds.), Numerical and computer methods in structural mechanics (pp. 43–57). New York: Academic Press Wilson, E. L., Taylor, R. L., Doherty, W. P., & Ghabaussi, J. (1973). Incompatible displacement models. In S. J. Fenves et al. (Eds.), Numerical and computer methods in structural mechanics (pp. 43–57). New York: Academic Press
go back to reference Wriggers, P. (2009). Mixed finite element methods - theory and discretization. In C. Carstensen, & P. Wriggers (Eds.), Mixed finite element technologies, volume 509 of CISM International Centre for Mechanical Sciences. Springer. Wriggers, P. (2009). Mixed finite element methods - theory and discretization. In C. Carstensen, & P. Wriggers (Eds.), Mixed finite element technologies, volume 509 of CISM International Centre for Mechanical Sciences. Springer.
go back to reference Wriggers, P., & Reese, S. (1996). A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135, 201–209.CrossRef Wriggers, P., & Reese, S. (1996). A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135, 201–209.CrossRef
go back to reference Yeo, S. T., & Lee, B. C. (1996). Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle. International Journal for Numerical Methods in Engineering, 39, 3083–3099.MathSciNetCrossRef Yeo, S. T., & Lee, B. C. (1996). Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle. International Journal for Numerical Methods in Engineering, 39, 3083–3099.MathSciNetCrossRef
go back to reference Zienkiewicz, O. C., Qu, S., Taylor, R. L., & Nakazawa, S. (1986). The patch test for mixed formulations. International Journal for Numerical Methods in Engineering, 23, 1873–1883.MathSciNetCrossRef Zienkiewicz, O. C., Qu, S., Taylor, R. L., & Nakazawa, S. (1986). The patch test for mixed formulations. International Journal for Numerical Methods in Engineering, 23, 1873–1883.MathSciNetCrossRef
Metadata
Title
A Concept for the Extension of the Assumed Stress Finite Element Method to Hyperelasticity
Authors
Nils Viebahn
Jörg Schröder
Peter Wriggers
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-33520-5_4

Premium Partner