Skip to main content
Top

2020 | OriginalPaper | Chapter

A Fully Nonlinear Beam Model of Bernoulli–Euler Type

Authors : Paulo de Mattos Pimenta, Sascha Maassen, Cátia da Costa e Silva, Jörg Schröder

Published in: Novel Finite Element Technologies for Solids and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a geometrically exact Bernoulli–Euler rod model. In contrast to Pimenta (1993b), Pimenta and Yojo (1993), Pimenta (1996), Pimenta and Campello (2001), where the hypothesis considered was Timoshenko’s, this approach is based on the Bernoulli–Euler theory for rods, so that transversal shear deformation is not accounted for. Energetically conjugated cross-sectional stresses and strains are defined. The fact that both the first Piola–Kirchhoff stress tensor and the deformation gradient appear again as primary variables is also appealing. A straight reference configuration is assumed for the rod, but, in the same way, as in Pimenta (1996), Pimenta and Campello (2009), initially curved rods can be accomplished, if one regards the initial configuration as a stress-free deformed state from the straight position. Consequently, the use of convective non-Cartesian coordinate systems is not necessary, and only components on orthogonal frames are employed. A cross section is considered to undergo a rigid body motion and parameterization of the rotation field is done by the rotation tensor with the Rodrigues formula that makes the updating of the rotational variables very simple. This parametrization can be seen in Pimenta et al. (2008), Campello et al. (2011). A simple formula for the incremental Rodrigues parameters in function of the displacements derivative and the torsion angle is also settled down. A 2-node finite element with Cubic Hermitian interpolation for the displacements, together with a linear approximation for the torsion angle, is displayed within the usual Finite Element Method, leading to adequate \(C_{1}\) continuity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Antman, S. S. (1974). Kirchhoff’s problem for nonlinearly elastic rods. Quarterly Of Applied Mathematics, 221–240.MathSciNetCrossRef Antman, S. S. (1974). Kirchhoff’s problem for nonlinearly elastic rods. Quarterly Of Applied Mathematics, 221–240.MathSciNetCrossRef
go back to reference Argyris, J. H., & Symeonidis, Sp. (1981). Nonlinear finite element analysis of elastic systems under non-conservative loading-natural formulation. part I. quasistatic problems. Computational Methods in Applied Mechanics and Engineering, 58, 75–123. Argyris, J. H., & Symeonidis, Sp. (1981). Nonlinear finite element analysis of elastic systems under non-conservative loading-natural formulation. part I. quasistatic problems. Computational Methods in Applied Mechanics and Engineering, 58, 75–123.
go back to reference Argyris, J. H. (1982). An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering, 32(1–3), 85–155.MathSciNetCrossRef Argyris, J. H. (1982). An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering, 32(1–3), 85–155.MathSciNetCrossRef
go back to reference Armero, F., & Valverde, J. (2012). Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case. Computer Methods in Applied Mechanics and Engineering, 213, 427–457. Armero, F., & Valverde, J. (2012). Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case. Computer Methods in Applied Mechanics and Engineering, 213, 427–457.
go back to reference Bauer, A. M., Breitenberger, M., Philipp, B., Wüchner, R., & Bletzinger, K.-U. (2016). Nonlinear isogeometric spatial Bernoulli beam. Computer Methods in Applied Mechanics and Engineering, 303, 101–127.MathSciNetCrossRef Bauer, A. M., Breitenberger, M., Philipp, B., Wüchner, R., & Bletzinger, K.-U. (2016). Nonlinear isogeometric spatial Bernoulli beam. Computer Methods in Applied Mechanics and Engineering, 303, 101–127.MathSciNetCrossRef
go back to reference Boyer, F., & Primault, D. (2004). Finite element of slender beams in finite transformations: A geometrically exact approach. International Journal for Numerical Methods in Engineering, 59(5), 669–702.MathSciNetCrossRef Boyer, F., & Primault, D. (2004). Finite element of slender beams in finite transformations: A geometrically exact approach. International Journal for Numerical Methods in Engineering, 59(5), 669–702.MathSciNetCrossRef
go back to reference Boyer, F. G., De Nayer, Leroyer, A., & Visonneau, M. (2011). Geometrically exact Kirchhoff beam theory: Application to cable dynamics. Journal of Computational and Nonlinear Dynamics, 6, 1–14. Boyer, F. G., De Nayer, Leroyer, A., & Visonneau, M. (2011). Geometrically exact Kirchhoff beam theory: Application to cable dynamics. Journal of Computational and Nonlinear Dynamics, 6, 1–14.
go back to reference Campello, E. (2000). Análise não-linear de perfis metálicos conformados a frio. 106 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Estruturas, Escola Politécnica da Universidade de São Paulo, São Paulo. Campello, E. (2000). Análise não-linear de perfis metálicos conformados a frio. 106 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Estruturas, Escola Politécnica da Universidade de São Paulo, São Paulo.
go back to reference Campello, E. M. B., Pimenta, P. M., & Wriggers, P. (2003). A triangular finite shell element based on a fully nonlinear shell formulation. Computational Mechanics, 31(6), 505–518.CrossRef Campello, E. M. B., Pimenta, P. M., & Wriggers, P. (2003). A triangular finite shell element based on a fully nonlinear shell formulation. Computational Mechanics, 31(6), 505–518.CrossRef
go back to reference Campello, E. M. B., Pimenta, P. M., & Wriggers, P. (2011). An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Computational Mechanics, 48(2r), 195–211.MathSciNetCrossRef Campello, E. M. B., Pimenta, P. M., & Wriggers, P. (2011). An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Computational Mechanics, 48(2r), 195–211.MathSciNetCrossRef
go back to reference Crisfield, M. A., & Jelenic, G. (1999). Objectivity of strain measures in the geometrically-exact three-dimensional beam theory and its finite element implementation. Proceedings of the Royal Society of London, 455, 1125–1147.MathSciNetCrossRef Crisfield, M. A., & Jelenic, G. (1999). Objectivity of strain measures in the geometrically-exact three-dimensional beam theory and its finite element implementation. Proceedings of the Royal Society of London, 455, 1125–1147.MathSciNetCrossRef
go back to reference Greco, L., & Cuomo, M. (2013). B-Spline interpolation of Kirchhoff-Love space rods. Computer Methods in Applied Mechanics and Engineering, 256, 251–269.MathSciNetCrossRef Greco, L., & Cuomo, M. (2013). B-Spline interpolation of Kirchhoff-Love space rods. Computer Methods in Applied Mechanics and Engineering, 256, 251–269.MathSciNetCrossRef
go back to reference Greco, L., & Cuomo, M. (2016). An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Computer Methods in Applied Mechanics and Engineering, 298, 325–349 (Elsevier). Greco, L., & Cuomo, M. (2016). An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Computer Methods in Applied Mechanics and Engineering, 298, 325–349 (Elsevier).
go back to reference Korelc, J., & Wriggers, P. (2016). Automation of finite element methods. Springer. Korelc, J., & Wriggers, P. (2016). Automation of finite element methods. Springer.
go back to reference Meier, C., Popp, A., & Wall, W. A. (2014). An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 278, 445–478.MathSciNetCrossRef Meier, C., Popp, A., & Wall, W. A. (2014). An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 278, 445–478.MathSciNetCrossRef
go back to reference Meier C., Grill M. J., Wall W. A., & Popp A. (2016). Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. International Journal of Solids and Structures. Meier C., Grill M. J., Wall W. A., & Popp A. (2016). Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. International Journal of Solids and Structures.
go back to reference Meier, C., Popp, A., & Wall, W. A. (2017). Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory vs. Simo-Reissner theory. Archives of Computational Methods in Engineering, 1–81. Meier, C., Popp, A., & Wall, W. A. (2017). Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory vs. Simo-Reissner theory. Archives of Computational Methods in Engineering, 1–81.
go back to reference Pimenta P. M. (1993a). On a geometrically-exact finite-strain shell model. In Proceedings of the 3rd Pan-American Congress on Applied Mechanics, III PACAM, São Paulo. Pimenta P. M. (1993a). On a geometrically-exact finite-strain shell model. In Proceedings of the 3rd Pan-American Congress on Applied Mechanics, III PACAM, São Paulo.
go back to reference Pimenta P. M. (1993b). On a geometrically-exact finite-strain rod model. In Proceedings of the 3rd Pan-American Congress on Applied Mechanics, III PACAM, São Paulo. Pimenta P. M. (1993b). On a geometrically-exact finite-strain rod model. In Proceedings of the 3rd Pan-American Congress on Applied Mechanics, III PACAM, São Paulo.
go back to reference Pimenta P. M. (1996). Geometrically-exact analysis of initially curved rods. In Advances in Computational Techniques for Structural Engineering (Edinburgh, U.K., v. 1, 99–108). Edinburgh: Civil-Comp Press. Pimenta P. M. (1996). Geometrically-exact analysis of initially curved rods. In Advances in Computational Techniques for Structural Engineering (Edinburgh, U.K., v. 1, 99–108). Edinburgh: Civil-Comp Press.
go back to reference Pimenta P. M., & Campello E. M. B. (2001). Geometrically nonlinear analysis of thin-walled space frames. In: Proceedings of the Second European Conference on Computational Mechanics, II ECCM, Cracow, Poland. Pimenta P. M., & Campello E. M. B. (2001). Geometrically nonlinear analysis of thin-walled space frames. In: Proceedings of the Second European Conference on Computational Mechanics, II ECCM, Cracow, Poland.
go back to reference Pimenta, P. M., & Campello, E. M. B. (2003). A fully nonlinear multi-parameter rod model incorporating general cross-section in-plane changes and out-of-plane warping. Latin-American Journal of Solids and Structures, 1(1), 119–140. Pimenta, P. M., & Campello, E. M. B. (2003). A fully nonlinear multi-parameter rod model incorporating general cross-section in-plane changes and out-of-plane warping. Latin-American Journal of Solids and Structures, 1(1), 119–140.
go back to reference Pimenta, P. M., & Campello, E. M. B. (2009). Shell curvature as an initial deformation: geometrically exact finite element approach. International Journal for Numerical Methods in Engineering, 78, 1094–1112.MathSciNetCrossRef Pimenta, P. M., & Campello, E. M. B. (2009). Shell curvature as an initial deformation: geometrically exact finite element approach. International Journal for Numerical Methods in Engineering, 78, 1094–1112.MathSciNetCrossRef
go back to reference Pimenta, P. M., & Yojo, T. (1993). Geometrically-exact analysis of spatial frames. Applied Mechanics Reviews, ASME, New York, 46(11), 118–128.CrossRef Pimenta, P. M., & Yojo, T. (1993). Geometrically-exact analysis of spatial frames. Applied Mechanics Reviews, ASME, New York, 46(11), 118–128.CrossRef
go back to reference Pimenta, P. M., Campello, E. M. B., & Wriggers, P. (2008). An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: Rods. Computational Mechanics, 42(5), 715–732.MathSciNetCrossRef Pimenta, P. M., Campello, E. M. B., & Wriggers, P. (2008). An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: Rods. Computational Mechanics, 42(5), 715–732.MathSciNetCrossRef
go back to reference Pimenta P. M., Almeida Neto E. S., & Campello E. M. B. (2010). A fully nonlinear thin shell model of kirchhoff-love type. In: P. De Mattos Pimenta, & P. Wriggers (Eds.), New trends in thin structures: Formulation, optimization and coupled problems. CISM international centre for mechanical sciences (vol 519). Vienna: Springer. Pimenta P. M., Almeida Neto E. S., & Campello E. M. B. (2010). A fully nonlinear thin shell model of kirchhoff-love type. In: P. De Mattos Pimenta, & P. Wriggers (Eds.), New trends in thin structures: Formulation, optimization and coupled problems. CISM international centre for mechanical sciences (vol 519). Vienna: Springer.
go back to reference Reissner, E. (1972). On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics, 23(5), 795–804.MATH Reissner, E. (1972). On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics, 23(5), 795–804.MATH
go back to reference Reissner, E. (1973). On one-dimensional large-displacement finite-strain beam theory. Studies in Applied Mathematics, 52(2), 87–95.CrossRef Reissner, E. (1973). On one-dimensional large-displacement finite-strain beam theory. Studies in Applied Mathematics, 52(2), 87–95.CrossRef
go back to reference Simo, J. C. (1985). A finite strain beam formulation. The three-dimensional dynamics. Part I. Computer Methods in Applied Mechanics and Engineering, 49(1), 55–70.CrossRef Simo, J. C. (1985). A finite strain beam formulation. The three-dimensional dynamics. Part I. Computer Methods in Applied Mechanics and Engineering, 49(1), 55–70.CrossRef
go back to reference Simo, J. C. (1992). The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Computer Methods in Applied Mechanics and Engineering, 189–200.MathSciNetCrossRef Simo, J. C. (1992). The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Computer Methods in Applied Mechanics and Engineering, 189–200.MathSciNetCrossRef
go back to reference Simo, J. C., & Vu-Quoc, L. (1986). A three dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering, 58(1), 79–116.CrossRef Simo, J. C., & Vu-Quoc, L. (1986). A three dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering, 58(1), 79–116.CrossRef
go back to reference Simo, J. C., & Vu-Quoc, L. (1991). A geometrically-exact rod model incorporating shear and torsion-warping deformation. International Journal of Solids and Structures, 27(3), 371–393.MathSciNetCrossRef Simo, J. C., & Vu-Quoc, L. (1991). A geometrically-exact rod model incorporating shear and torsion-warping deformation. International Journal of Solids and Structures, 27(3), 371–393.MathSciNetCrossRef
go back to reference Simo, J. C., Fox, D. D., & Hughes, T. J. R. (1992). Formulations of finite elasticity with independent rotations. Computer Methods in Applied Mechanics and Engineering. Holland, 277–288. Simo, J. C., Fox, D. D., & Hughes, T. J. R. (1992). Formulations of finite elasticity with independent rotations. Computer Methods in Applied Mechanics and Engineering. Holland, 277–288.
go back to reference Sokolov I., Krylov S., & Harari I. (2015) Extension of non-linear beam models with deformable cross sections. Computational Mechanics, 999–1021. Sokolov I., Krylov S., & Harari I. (2015) Extension of non-linear beam models with deformable cross sections. Computational Mechanics, 999–1021.
go back to reference Timoshenko, S. P. (1953). History of Strength of Materials: With a brief account of the history of theory of elasticity and theory of structures (p. 452). New York: McGraw-Hill. Timoshenko, S. P. (1953). History of Strength of Materials: With a brief account of the history of theory of elasticity and theory of structures (p. 452). New York: McGraw-Hill.
go back to reference Viebahn, N., Pimenta, P. M., & Schroeder, J. (2016) A simple triangular finite element for nonlinear thin shells - Statics, Dynamics and anisotropy. Computational Mechanics, online. Viebahn, N., Pimenta, P. M., & Schroeder, J. (2016) A simple triangular finite element for nonlinear thin shells - Statics, Dynamics and anisotropy. Computational Mechanics, online.
go back to reference Whirman, A. B., & De Silva, C. N. (1974, December). An exact solution in a nonlinear theory of rods. Journal of Elasticity. Netherlands, 265–280. Whirman, A. B., & De Silva, C. N. (1974, December). An exact solution in a nonlinear theory of rods. Journal of Elasticity. Netherlands, 265–280.
Metadata
Title
A Fully Nonlinear Beam Model of Bernoulli–Euler Type
Authors
Paulo de Mattos Pimenta
Sascha Maassen
Cátia da Costa e Silva
Jörg Schröder
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-33520-5_5

Premium Partner