Skip to main content
Top

2021 | OriginalPaper | Chapter

A Constitutive Model for Steel-Fibre-Reinforced Lightweight Concrete

Authors : Hasanain K. Al-Naimi, Ali A. Abbas

Published in: Fibre Reinforced Concrete: Improvements and Innovations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method is proposed to derive and validate material properties for lightweight fibrous concrete using experimental and numerical data. The coarse lightweight material tested (produced by LYTAG) is recycled and offers an alternative to gravel and quarry resources which are at risk of depletion in future. Also, this material can lead to reduction in the mass of the structure which results in economical designs. However, in comparison to normal weight aggregate concrete (NWAC), lightweight aggregate concrete (LWAC) tends to be more brittle as it typically shears through the aggregates leading to instantaneous drop in peak load in both compression and tension tests. Hence, to address this brittleness for LWAC, modern hooked-end DRAMIX fibres with different geometry (hooks), dosages (Vf) and bond strengths (τb) are added to mixes with different strengths (fck). This paper focuses on both tensile properties using a direct pullout and indirect notched beam tests, and compressive properties (fck, E, μ) using the conventional compression test for cylinders of plain and steel-fibre reinforced lightweight concrete (SFRLC). A tensile semi-empirical multilinear σ-ω relation was derived besides compressive σ-ε and validated against available steel fibre reinforced concrete (SFRC) constitutive models for the tested fibrous notched beams using ABAQUS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Gerritse, A.: Design considerations for reinforced lightweight concrete. Int. J. Cem. Compos. Lightweight Concr. 3(1), 57–69 (1981)CrossRef Gerritse, A.: Design considerations for reinforced lightweight concrete. Int. J. Cem. Compos. Lightweight Concr. 3(1), 57–69 (1981)CrossRef
go back to reference Libre, N., Shekarchi, M., Mahoutian, M., Soroushian, P.: Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 25(5), 2458–2464 (2011)CrossRef Libre, N., Shekarchi, M., Mahoutian, M., Soroushian, P.: Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 25(5), 2458–2464 (2011)CrossRef
go back to reference Campione, G.: Flexural and shear resistance of steel fiber-reinforced lightweight concrete beams. J. Struct. Eng. 140(4), 04013103 (2014)CrossRef Campione, G.: Flexural and shear resistance of steel fiber-reinforced lightweight concrete beams. J. Struct. Eng. 140(4), 04013103 (2014)CrossRef
go back to reference Dias-da-Costa, D., Carmo, R., Graça-e-Costa, R., Valença, J., Alfaiate, J.: Longitudinal reinforcement ratio in lightweight aggregate concrete beams. Eng. Struct. 81, 219–229 (2014)CrossRef Dias-da-Costa, D., Carmo, R., Graça-e-Costa, R., Valença, J., Alfaiate, J.: Longitudinal reinforcement ratio in lightweight aggregate concrete beams. Eng. Struct. 81, 219–229 (2014)CrossRef
go back to reference Mo, K., Goh, S., Alengaram, U., Visintin, P., Jumaat, M.: Mechanical, toughness, bond and durability-related properties of lightweight concrete reinforced with steel fibres. Mater. Struct. 50(1), 46 (2017)CrossRef Mo, K., Goh, S., Alengaram, U., Visintin, P., Jumaat, M.: Mechanical, toughness, bond and durability-related properties of lightweight concrete reinforced with steel fibres. Mater. Struct. 50(1), 46 (2017)CrossRef
go back to reference Chen, H., Huang, C., Tang, C.: Dynamic properties of lightweight concrete beams made by sedimentary lightweight aggregate. J. Mater. Civ. Eng. 22(6), 599–606 (2010)CrossRef Chen, H., Huang, C., Tang, C.: Dynamic properties of lightweight concrete beams made by sedimentary lightweight aggregate. J. Mater. Civ. Eng. 22(6), 599–606 (2010)CrossRef
go back to reference Badogiannis, E., Kotsovos, M.: Monotonic and cyclic flexural tests on lightweight aggregate concrete beams. Earthquakes Struct. 6(3), 317–334 (2014)CrossRef Badogiannis, E., Kotsovos, M.: Monotonic and cyclic flexural tests on lightweight aggregate concrete beams. Earthquakes Struct. 6(3), 317–334 (2014)CrossRef
go back to reference Lim, H.S., Wee, T.H., Mansur, M.A., Kong, K.H.: Flexural behavior of reinforced lightweight aggregate concrete beams. In: Asia-Pacific Structural Engineering and Construction Conference, pp. 68–82. APSEC, Kuala Lumpur (2006) Lim, H.S., Wee, T.H., Mansur, M.A., Kong, K.H.: Flexural behavior of reinforced lightweight aggregate concrete beams. In: Asia-Pacific Structural Engineering and Construction Conference, pp. 68–82. APSEC, Kuala Lumpur (2006)
go back to reference Wu, C., Kan, Y., Huang, C., Yen, T., Chen, L.: Flexural behavior and size effect of full scale reinforced lightweight concrete beam. J. Mar. Sci. Technol. 19(2), 132–140 (2011) Wu, C., Kan, Y., Huang, C., Yen, T., Chen, L.: Flexural behavior and size effect of full scale reinforced lightweight concrete beam. J. Mar. Sci. Technol. 19(2), 132–140 (2011)
go back to reference Gao, J., Sun, W., Morino, K.: Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cem. Concr. Compos. 19(4), 307–313 (1997)CrossRef Gao, J., Sun, W., Morino, K.: Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete. Cem. Concr. Compos. 19(4), 307–313 (1997)CrossRef
go back to reference Campione, G., La Mendola, L.: Behavior in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement. Cem. Concr. Compos. 26(6), 645–656 (2004)CrossRef Campione, G., La Mendola, L.: Behavior in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement. Cem. Concr. Compos. 26(6), 645–656 (2004)CrossRef
go back to reference Abbas, A., Syed Mohsin, S., Cotsovos, D.: Seismic response of steel fibre reinforced concrete beam–column joints. Eng. Struct. 59, 261–283 (2014a)CrossRef Abbas, A., Syed Mohsin, S., Cotsovos, D.: Seismic response of steel fibre reinforced concrete beam–column joints. Eng. Struct. 59, 261–283 (2014a)CrossRef
go back to reference Di Prisco, M., Colombo, M., Dozio, D.: Fibre-reinforced concrete in fib model code 2010: principles, models and test validation. Struct. Concr. 14(4), 342–361 (2013)CrossRef Di Prisco, M., Colombo, M., Dozio, D.: Fibre-reinforced concrete in fib model code 2010: principles, models and test validation. Struct. Concr. 14(4), 342–361 (2013)CrossRef
go back to reference Grabois, T., Cordeiro, G., Filho, R.: Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Constr. Build. Mater. 104, 284–292 (2016)CrossRef Grabois, T., Cordeiro, G., Filho, R.: Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Constr. Build. Mater. 104, 284–292 (2016)CrossRef
go back to reference Ritchie, A., Kayali, O.: The effects of fiber reinforcement on lightweight aggregate concrete. In: Neville A (ed.) Proceedings of RILEM Symposium on Fiber Reinforced Cement and Concrete, pp. 247–256. The Construction Press Ltd. (1975) Ritchie, A., Kayali, O.: The effects of fiber reinforcement on lightweight aggregate concrete. In: Neville A (ed.) Proceedings of RILEM Symposium on Fiber Reinforced Cement and Concrete, pp. 247–256. The Construction Press Ltd. (1975)
go back to reference Swamy, N., Jones, R., Chiam, A.: Influence of steel fibers on the shear resistance of lightweight concrete i-beams. ACI Struct. J. 90(1), 103–114 (1993) Swamy, N., Jones, R., Chiam, A.: Influence of steel fibers on the shear resistance of lightweight concrete i-beams. ACI Struct. J. 90(1), 103–114 (1993)
go back to reference Kang, T., Kim, W.: Shear strength of steel fiber-reinforced lightweight concrete beams. Korea Concrete Institute, Oklahoma, pp. 1386–1392 (2010) Kang, T., Kim, W.: Shear strength of steel fiber-reinforced lightweight concrete beams. Korea Concrete Institute, Oklahoma, pp. 1386–1392 (2010)
go back to reference Iqbal, S., Ali, A., Holschemacher, K., Bier, T.: Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Constr. Build. Mater. 98, 325–333 (2015)CrossRef Iqbal, S., Ali, A., Holschemacher, K., Bier, T.: Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Constr. Build. Mater. 98, 325–333 (2015)CrossRef
go back to reference RILEM TC 162-TDF: Bending test: final recommendation. Mater. Struct. 35, 579–582 (2002)CrossRef RILEM TC 162-TDF: Bending test: final recommendation. Mater. Struct. 35, 579–582 (2002)CrossRef
go back to reference RILEM TC 162-TDF: σ-ε design method: Final Recommendation. Mater. Struct. 36, 560–567 (2003)CrossRef RILEM TC 162-TDF: σ-ε design method: Final Recommendation. Mater. Struct. 36, 560–567 (2003)CrossRef
go back to reference Barros, J., Cunha, V., Ribeiro, A., Antunes, J.: Post-cracking behaviour of steel fibre reinforced concrete. Mater. Struct. 38(275), 47–56 (2005)CrossRef Barros, J., Cunha, V., Ribeiro, A., Antunes, J.: Post-cracking behaviour of steel fibre reinforced concrete. Mater. Struct. 38(275), 47–56 (2005)CrossRef
go back to reference Fédération Internationale du béton: fib model code for concrete structures 2010, pp. 147–150. Ernst and Sohn, Berlin (2013) Fédération Internationale du béton: fib model code for concrete structures 2010, pp. 147–150. Ernst and Sohn, Berlin (2013)
go back to reference Sadoon, A., Rees, D.W.A., Ghaffar, S.H., Fan, M.: Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete. Constr. Build. Mater. 178, 484–494 (2018a)CrossRef Sadoon, A., Rees, D.W.A., Ghaffar, S.H., Fan, M.: Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete. Constr. Build. Mater. 178, 484–494 (2018a)CrossRef
go back to reference The Concrete Society: Guidance for the design of steel-fibre-reinforced concrete. Technical report No. 63. Cement and Concrete Industry (2007) The Concrete Society: Guidance for the design of steel-fibre-reinforced concrete. Technical report No. 63. Cement and Concrete Industry (2007)
go back to reference Lyag: Technical Manual. Lytag ltd, London (2011) Lyag: Technical Manual. Lytag ltd, London (2011)
go back to reference Robins, P., Austin, S., Jones, P.: Pull-out behaviour of hooked steel fibres. Mater. Struct. RILEM 35, 4343–4442 (2002)CrossRef Robins, P., Austin, S., Jones, P.: Pull-out behaviour of hooked steel fibres. Mater. Struct. RILEM 35, 4343–4442 (2002)CrossRef
go back to reference Krenchel, H.: Fiber spacing and specific fiber surface. In: Neville, A.M. (ed.) RILEM Symposium on Fiber Reinforced Cement and Concrete, pp. 69–79. The Construction Press, London (1975) Krenchel, H.: Fiber spacing and specific fiber surface. In: Neville, A.M. (ed.) RILEM Symposium on Fiber Reinforced Cement and Concrete, pp. 69–79. The Construction Press, London (1975)
go back to reference Romualdi, J.P., Mandel, J.A.: Tensile strength of concrete affected by uniformly distributed and closely spaced short length of wire reinforcement. In: AC1 Journal Proceedings vol. 61, no. 6, pp. 657–671, June 1964 Romualdi, J.P., Mandel, J.A.: Tensile strength of concrete affected by uniformly distributed and closely spaced short length of wire reinforcement. In: AC1 Journal Proceedings vol. 61, no. 6, pp. 657–671, June 1964
go back to reference Soroushian and Lee: Tensile strength of steel fiber reinforced concrete: correlation with some measures of fiber spacing. ACI Mater. J. 87(6), 542–546 (1990) Soroushian and Lee: Tensile strength of steel fiber reinforced concrete: correlation with some measures of fiber spacing. ACI Mater. J. 87(6), 542–546 (1990)
go back to reference Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, vol. 2, 6th edn. Butterworth-Heinemann, Oxford (2005)MATH Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, vol. 2, 6th edn. Butterworth-Heinemann, Oxford (2005)MATH
go back to reference Tlemat, H., Pilakoutas, K., Neocleous, K.: Stress-strain characteristic of SFRC using recycled fibres. Mater. Struct. 39, 365–377 (2006) Tlemat, H., Pilakoutas, K., Neocleous, K.: Stress-strain characteristic of SFRC using recycled fibres. Mater. Struct. 39, 365–377 (2006)
go back to reference Syed Mohsin, S.M.: Behaviour of fibre-reinforced concrete structures under seismic loading. Ph.D. thesis, Imperial College London, London, UK (2012) Syed Mohsin, S.M.: Behaviour of fibre-reinforced concrete structures under seismic loading. Ph.D. thesis, Imperial College London, London, UK (2012)
go back to reference Abbas, A., Syed Mohsin, S., Cotsovos, D., Ruiz-Teran, A.: Shear behaviour of steel-fibre-reinforced concrete simply supported beams. Proc. Inst. Civ. Eng. Struct. Build. 167(9), 544–558 (2014b)CrossRef Abbas, A., Syed Mohsin, S., Cotsovos, D., Ruiz-Teran, A.: Shear behaviour of steel-fibre-reinforced concrete simply supported beams. Proc. Inst. Civ. Eng. Struct. Build. 167(9), 544–558 (2014b)CrossRef
go back to reference Cotsovos, B.D.M., Abbas, A.A.: Behaviour of steel-fibre-reinforced concrete beams under high-rate loading. Comput. Concr. 22(3), 337–353 (2018) Cotsovos, B.D.M., Abbas, A.A.: Behaviour of steel-fibre-reinforced concrete beams under high-rate loading. Comput. Concr. 22(3), 337–353 (2018)
go back to reference Cunha, V., Barros, J., Sena-Cruz, J.: Tensile behavior of steel fiber-reinforced self-compacting concrete. In: Fiber-Reinforced Self Consolidating Concrete: Research and Applications (ACI SP-274), pp. 51–68. American Concrete Institute, Detroit (2010) Cunha, V., Barros, J., Sena-Cruz, J.: Tensile behavior of steel fiber-reinforced self-compacting concrete. In: Fiber-Reinforced Self Consolidating Concrete: Research and Applications (ACI SP-274), pp. 51–68. American Concrete Institute, Detroit (2010)
go back to reference Lok, T.-S., Xiao, J.R.: Flexural strength assessment of steel fiber reinforced concrete. J. Mater. Civ. Eng. 11(3), 188–196 (1999)CrossRef Lok, T.-S., Xiao, J.R.: Flexural strength assessment of steel fiber reinforced concrete. J. Mater. Civ. Eng. 11(3), 188–196 (1999)CrossRef
go back to reference Zhang, Y.J., Huang, Z.J., Yanga, S.L., Xua, X.W.C.: A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete. Cem. Concr. Res. 106(2018), 130–143 (2018)CrossRef Zhang, Y.J., Huang, Z.J., Yanga, S.L., Xua, X.W.C.: A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete. Cem. Concr. Res. 106(2018), 130–143 (2018)CrossRef
go back to reference Ngo, D., Scordelis, A.C.: Finite element analysis of reinforced concrete beams. J. ACI 64(3), 152–163 (1967) Ngo, D., Scordelis, A.C.: Finite element analysis of reinforced concrete beams. J. ACI 64(3), 152–163 (1967)
go back to reference Rashid, Y.R.: Ultimate strength analysis of prestressed concrete pressure vessels. Nucl. Eng. Des. 7(4), 334–344 (1968)CrossRef Rashid, Y.R.: Ultimate strength analysis of prestressed concrete pressure vessels. Nucl. Eng. Des. 7(4), 334–344 (1968)CrossRef
go back to reference De Montaignac, R., Massicotte, B., Charron, J.-P., Nour, A.: Design of SFRC structural elements: post-cracking tensile strength measurement. Mater. Struct. 45(4), 609–622 (2012)CrossRef De Montaignac, R., Massicotte, B., Charron, J.-P., Nour, A.: Design of SFRC structural elements: post-cracking tensile strength measurement. Mater. Struct. 45(4), 609–622 (2012)CrossRef
go back to reference Al-Naimi, H., Abbas, A.: Ductility of steel-fibre-reinforced lightweight concrete, Eccomas Proceedia. In: COMPDYN, pp. 4009–4023, Crete, Greece, 24-26 June 2019 (2019). viewed 31 Dec 2019.  www.eccomasproceedia.org Al-Naimi, H., Abbas, A.: Ductility of steel-fibre-reinforced lightweight concrete, Eccomas Proceedia. In: COMPDYN, pp. 4009–4023, Crete, Greece, 24-26 June 2019 (2019). viewed 31 Dec 2019.  www.​eccomasproceedia​.​org
go back to reference Lambert, G.: Properties and behaviour of structural lightweight (Lytag-sand) concrete. PhD thesis, University of Sheffield (1982) Lambert, G.: Properties and behaviour of structural lightweight (Lytag-sand) concrete. PhD thesis, University of Sheffield (1982)
go back to reference Hannant, D.J.: Fibre Cements and Fibre Concretes. Wiley, Hoboken (1978) Hannant, D.J.: Fibre Cements and Fibre Concretes. Wiley, Hoboken (1978)
go back to reference Lee, S.-C., Cho, J.-Y., Vecchio, F.J.: Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Verification. ACI Mater. J. 108(5), 526–535 (2011) Lee, S.-C., Cho, J.-Y., Vecchio, F.J.: Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Verification. ACI Mater. J. 108(5), 526–535 (2011)
go back to reference Alwan, J., Naaman, A., Guerrero, P.: Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concr. Sci. Eng. 1, 15–25 (1999) Alwan, J., Naaman, A., Guerrero, P.: Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concr. Sci. Eng. 1, 15–25 (1999)
go back to reference Sadoon, A., Rees, D.W.A., Ghaffar, S.H., Fan, M.: Predicting pull-out behaviour of 4D/5D hooked end fibres embedded in normal-high strength concrete. Eng. Struct. 172, 967–980 (2018b)CrossRef Sadoon, A., Rees, D.W.A., Ghaffar, S.H., Fan, M.: Predicting pull-out behaviour of 4D/5D hooked end fibres embedded in normal-high strength concrete. Eng. Struct. 172, 967–980 (2018b)CrossRef
go back to reference Blanco, A., Pujadas, P., de la Fuente, A., Cavalaro, S., Aguado, A.: Application of constitutive models in European codes to RC–FRC. Constr. Build. Mater. 40, 246–259 (2013)CrossRef Blanco, A., Pujadas, P., de la Fuente, A., Cavalaro, S., Aguado, A.: Application of constitutive models in European codes to RC–FRC. Constr. Build. Mater. 40, 246–259 (2013)CrossRef
go back to reference Li, F.-Y., Cao, C.-Y., Cui, Y.-X., Wu, P.-F.: Experimental study of the basic mechanical properties of directionally distributed steel fibre-reinforced concrete. Adv. Mater. Sci. Eng. 3, 1–11 (2018) Li, F.-Y., Cao, C.-Y., Cui, Y.-X., Wu, P.-F.: Experimental study of the basic mechanical properties of directionally distributed steel fibre-reinforced concrete. Adv. Mater. Sci. Eng. 3, 1–11 (2018)
Metadata
Title
A Constitutive Model for Steel-Fibre-Reinforced Lightweight Concrete
Authors
Hasanain K. Al-Naimi
Ali A. Abbas
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-58482-5_81