Skip to main content
Top
Published in: Neural Computing and Applications 11/2019

21-06-2018 | Original

A deep discriminative and robust nonnegative matrix factorization network method with soft label constraint

Authors: Ming Tong, Yiran Chen, Mengao Zhao, Haili Bu, Shengnan Xi

Published in: Neural Computing and Applications | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to obtain a discriminative, compact and robust data representation, a discriminative and robust nonnegative matrix factorization method with soft label constraint (DRNMF_SLC) is proposed. By minimizing the objective function, the data representation after learning soft label constraint is obtained. To further acquire a more hierarchical and discriminative data representation, a deep discriminative and robust nonnegative matrix factorization network method with soft label constraint (Deep DRNMFN_SLC) is constructed. In order to improve the feature expression ability of deep neural network (DNN), a deep discriminative and robust nonnegative matrix factorization network method with soft label constraint based on DNN (Deep DRNMFN_SLC_DNN) is proposed, which could obtain a more discriminative, robust and generalized feature representation, and meanwhile greatly reduce the dimension of data features. Furthermore, the objective function of DRNMF_SLC is constructed by introducing both the global loss function and the central loss function of soft label constraint matrix, and the optimization solution and convergence proof of objective function are given simultaneously. When the proposed DRNMF_SLC method and Deep DRNMFN_SLC_DNN method are, respectively, applied to the face recognition under occlusions and illumination variations, the frameworks, Algorithm 1 and Algorithm 2 are given. The extensive and adequate experiments demonstrate the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sun Y, Mao H, Sang Y et al (2017) Explicit guiding auto-encoders for learning meaningful representation. Neural Comput Appl 28(3):429–436CrossRef Sun Y, Mao H, Sang Y et al (2017) Explicit guiding auto-encoders for learning meaningful representation. Neural Comput Appl 28(3):429–436CrossRef
2.
go back to reference Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Int 19(7):711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Int 19(7):711–720CrossRef
3.
go back to reference He J, Bi Y, Ding L et al (2017) Unsupervised feature selection based on decision graph. Neural Comput Appl 28(10):3047–3059CrossRef He J, Bi Y, Ding L et al (2017) Unsupervised feature selection based on decision graph. Neural Comput Appl 28(10):3047–3059CrossRef
4.
go back to reference Li Z, Liu J, Yang Y et al (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Know Data Eng 26(9):2138–2150CrossRef Li Z, Liu J, Yang Y et al (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Know Data Eng 26(9):2138–2150CrossRef
5.
go back to reference Yan H, Yang J (2015) Sparse discriminative feature selection. Pattern Recognit 48(5):1827–1835CrossRef Yan H, Yang J (2015) Sparse discriminative feature selection. Pattern Recognit 48(5):1827–1835CrossRef
6.
go back to reference Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Int 37(10):2085–2098CrossRef Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Int 37(10):2085–2098CrossRef
7.
go back to reference Feng Y, Xiao J, Zhou K et al (2015) A locally weighted sparse graph regularized non-negative matrix factorization method. Neurocomputing 169:68–76CrossRef Feng Y, Xiao J, Zhou K et al (2015) A locally weighted sparse graph regularized non-negative matrix factorization method. Neurocomputing 169:68–76CrossRef
8.
go back to reference Pang Y, Wang S, Yuan Y (2014) Learning regularized LDA by clustering. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201CrossRef Pang Y, Wang S, Yuan Y (2014) Learning regularized LDA by clustering. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201CrossRef
9.
go back to reference He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems pp 153–160 He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems pp 153–160
10.
go back to reference Zhang H, Wu QMJ, Chow TWS et al (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876CrossRef Zhang H, Wu QMJ, Chow TWS et al (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876CrossRef
11.
go back to reference Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Int 29(1):40–51CrossRef Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Int 29(1):40–51CrossRef
12.
go back to reference Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef
13.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef
14.
go back to reference Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
15.
go back to reference Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRef Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRef
16.
go back to reference Li SZ, Hou XW, Zhang HJ et al (2001) Learning spatially localized, parts-based representation. In: IEEE conference on computer vision and pattern recognition, pp 207–212 Li SZ, Hou XW, Zhang HJ et al (2001) Learning spatially localized, parts-based representation. In: IEEE conference on computer vision and pattern recognition, pp 207–212
17.
go back to reference Pascual-Montano A, Carazo JM, Kochi K et al (2006) Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans Pattern Anal Mach Int 28(3):403–415CrossRef Pascual-Montano A, Carazo JM, Kochi K et al (2006) Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans Pattern Anal Mach Int 28(3):403–415CrossRef
18.
go back to reference Cai D, He X, Han J et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Int 33(8):1548–1560CrossRef Cai D, He X, Han J et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Int 33(8):1548–1560CrossRef
19.
go back to reference Wang Y, Jia Y, Hu C et al (2004) Fisher non-negative matrix factorization for learning local features. In: Proceedings of Asian conference on computer vision, pp 27–30 Wang Y, Jia Y, Hu C et al (2004) Fisher non-negative matrix factorization for learning local features. In: Proceedings of Asian conference on computer vision, pp 27–30
20.
go back to reference Zafeiriou S, Tefas A, Buciu I et al (2006) Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. Neural Netw 17(3):683–695CrossRef Zafeiriou S, Tefas A, Buciu I et al (2006) Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. Neural Netw 17(3):683–695CrossRef
21.
go back to reference Liu H, Wu Z, Li X et al (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Int 34(7):1299–1311CrossRef Liu H, Wu Z, Li X et al (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Int 34(7):1299–1311CrossRef
22.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: ImageNet challenge, pp 1–10 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: ImageNet challenge, pp 1–10
23.
go back to reference Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and clustering. In: IEEE conference on computer vision and pattern recognition, pp 815–823 Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and clustering. In: IEEE conference on computer vision and pattern recognition, pp 815–823
24.
go back to reference Sun Y, Chen Y, Wang X et al (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems, pp 1988–1996 Sun Y, Chen Y, Wang X et al (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems, pp 1988–1996
25.
go back to reference Sun Y, Wang X, Tang X (2015) Deeply learned face representations are sparse, selective, and robust. In: IEEE conference on computer vision and pattern recognition, pp 2892–2900 Sun Y, Wang X, Tang X (2015) Deeply learned face representations are sparse, selective, and robust. In: IEEE conference on computer vision and pattern recognition, pp 2892–2900
27.
go back to reference Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9
28.
go back to reference Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. Proc Br Mach Vis Conf 1(3):6 Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. Proc Br Mach Vis Conf 1(3):6
30.
go back to reference Zhang H, Cao X, Ho JKL et al (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531CrossRef Zhang H, Cao X, Ho JKL et al (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531CrossRef
31.
go back to reference Mehdipour Ghazi M, Kemal Ekenel H (2016) A comprehensive analysis of deep learning based representation for face recognition. In: IEEE conference on computer vision and pattern recognition, pp 34–41 Mehdipour Ghazi M, Kemal Ekenel H (2016) A comprehensive analysis of deep learning based representation for face recognition. In: IEEE conference on computer vision and pattern recognition, pp 34–41
32.
go back to reference Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
33.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
34.
go back to reference Zheng W (2014) Multi-view facial expression recognition based on group sparse reduced-rank regression. IEEE Trans Affect Comput 5(1):71–85CrossRef Zheng W (2014) Multi-view facial expression recognition based on group sparse reduced-rank regression. IEEE Trans Affect Comput 5(1):71–85CrossRef
35.
go back to reference Li J, Zhao J, Zhao F et al (2016) Robust face recognition with deep multi-view representation learning. In: Proceedings of the 2016 ACM on multimedia conference, pp 1068–1072 Li J, Zhao J, Zhao F et al (2016) Robust face recognition with deep multi-view representation learning. In: Proceedings of the 2016 ACM on multimedia conference, pp 1068–1072
36.
go back to reference Wu F, Jing XY, You X et al (2016) Multi-view low-rank dictionary learning for image classification. Pattern Recognit 50:143–154CrossRef Wu F, Jing XY, You X et al (2016) Multi-view low-rank dictionary learning for image classification. Pattern Recognit 50:143–154CrossRef
37.
go back to reference Song HA, Kim BK, Xuan TL et al (2015) Hierarchical feature extraction by multi-layer non-negative matrix factorization network for classification task. Neurocomputing 165:63–74CrossRef Song HA, Kim BK, Xuan TL et al (2015) Hierarchical feature extraction by multi-layer non-negative matrix factorization network for classification task. Neurocomputing 165:63–74CrossRef
38.
go back to reference Huang GB, Lee H, Learned-Miller E (2012) Learning hierarchical representations for face verification with convolutional deep belief networks. In: IEEE conference on computer vision and pattern recognition, pp 2518–2525 Huang GB, Lee H, Learned-Miller E (2012) Learning hierarchical representations for face verification with convolutional deep belief networks. In: IEEE conference on computer vision and pattern recognition, pp 2518–2525
39.
go back to reference Trigeorgis G, Bousmalis K, Zafeiriou S et al (2017) A deep matrix factorization method for learning attribute representations. IEEE Trans Pattern Anal Mach Int 39(3):417–429CrossRef Trigeorgis G, Bousmalis K, Zafeiriou S et al (2017) A deep matrix factorization method for learning attribute representations. IEEE Trans Pattern Anal Mach Int 39(3):417–429CrossRef
40.
go back to reference Ouyang W, Wang X (2012) A discriminative deep model for pedestrian detection with occlusion handling. In: IEEE conference on computer vision and pattern recognition, pp 3258–3265 Ouyang W, Wang X (2012) A discriminative deep model for pedestrian detection with occlusion handling. In: IEEE conference on computer vision and pattern recognition, pp 3258–3265
41.
go back to reference Chan TH, Jia K, Gao S et al (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef Chan TH, Jia K, Gao S et al (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetCrossRef
42.
go back to reference Zhen L, Yi D, Li SZ (2016) Learning stacked image descriptor for face recognition. IEEE Trans Circuits Syst Video Technol 26(9):1685–1696CrossRef Zhen L, Yi D, Li SZ (2016) Learning stacked image descriptor for face recognition. IEEE Trans Circuits Syst Video Technol 26(9):1685–1696CrossRef
43.
go back to reference Hosseini-Asl E, Zurada JM, Nasraoui O (2016) Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints. IEEE Trans Neural Netw Learn Syst 27(12):2486–2498CrossRef Hosseini-Asl E, Zurada JM, Nasraoui O (2016) Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints. IEEE Trans Neural Netw Learn Syst 27(12):2486–2498CrossRef
44.
go back to reference Babenko A, Slesarev1 A, Chigorin A et al (2014) Neural codes for image retrieval. In: Proceedings of European conference on computer vision, pp 584–599 Babenko A, Slesarev1 A, Chigorin A et al (2014) Neural codes for image retrieval. In: Proceedings of European conference on computer vision, pp 584–599
45.
go back to reference Yang S, Luo P, Loy CC et al (2015) Deep representation learning with target coding. In: AAAI, pp 3848–3854 Yang S, Luo P, Loy CC et al (2015) Deep representation learning with target coding. In: AAAI, pp 3848–3854
46.
go back to reference Cao Y, Long M, Wang J et al (2016) Deep quantization network for efficient image retrieval. In: AAAI, pp 3457–3463 Cao Y, Long M, Wang J et al (2016) Deep quantization network for efficient image retrieval. In: AAAI, pp 3457–3463
47.
go back to reference Gui L, Morency LP (2015) Learning and transferring deep ConvNet representations with group-sparse factorization. In: International conference on computer vision Gui L, Morency LP (2015) Learning and transferring deep ConvNet representations with group-sparse factorization. In: International conference on computer vision
48.
go back to reference Martinez AR, Benavente R (1998) The AR face database. CVC technical report 24, Barcelona, Spain Martinez AR, Benavente R (1998) The AR face database. CVC technical report 24, Barcelona, Spain
49.
go back to reference Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the second IEEE workshop on applications of computer vision, pp 138–142 Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the second IEEE workshop on applications of computer vision, pp 138–142
50.
go back to reference Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Fifth IEEE international conference on automatic face and gesture recognition Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Fifth IEEE international conference on automatic face and gesture recognition
51.
go back to reference Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Int 23(6):643–660CrossRef Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Int 23(6):643–660CrossRef
52.
go back to reference Zhang R, Hu Z, Pan G et al (2016) Robust discriminative non-negative matrix factorization. Neurocomputing 173:552–561CrossRef Zhang R, Hu Z, Pan G et al (2016) Robust discriminative non-negative matrix factorization. Neurocomputing 173:552–561CrossRef
53.
go back to reference Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678 Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678
54.
go back to reference Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH
Metadata
Title
A deep discriminative and robust nonnegative matrix factorization network method with soft label constraint
Authors
Ming Tong
Yiran Chen
Mengao Zhao
Haili Bu
Shengnan Xi
Publication date
21-06-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3554-6

Other articles of this Issue 11/2019

Neural Computing and Applications 11/2019 Go to the issue

Premium Partner