Skip to main content
Top
Published in: Journal of Electronic Materials 2/2024

21-11-2023 | Original Research Article

A DFT and Time-dependent DFT Investigation of the Structural, Electronic and Optical Properties of Lead-free FAMgI3 Perovskite for Photovoltaic Applications

Authors: Youssef El Arfaoui, Mohammed Khenfouch, Nabil Habiballah

Published in: Journal of Electronic Materials | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead-free perovskites are among the compounds that are currently the most investigated for their potential application in photovoltaics because of their nontoxic effect on the environment. In this work, we report the structural, electronic, and optical properties of hybrid organic-inorganic FAMgI3-based perovskite for use in photovoltaic technology. We use density functional theory (DFT) and time-dependent density functional theory (TDDFT) executed in the Quantum Espresso framework. These calculations were performed by applying the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE), the GGA-PBE revised for solids (GGA-PBESol), and local density approximation (LDA). The band structure and total and partial density of states (DOS and PDOS) of this perovskite are elaborated and discussed; the semiconductor behavior and direct band gap of this material are demonstrated. In addition, we investigated the effect of spin–orbit coupling (SOC) correction on the band gap energy and demonstrated that the band gap energy was reduced by the SOC effect. In fact, when using the GGA-PBE in the absence of SOC, the calculated band gap energy was 1.4 eV. When including the SOC effect, it is demonstrated that the band gap energy decreases to 1.01 eV. Moreover, the optical properties have been presented and discussed. The material also exhibits excellent optical properties, including high absorption, and can therefore be used in the development of lead-free perovskite solar cells and other optoelectronic applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRef A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRef
3.
go back to reference S. Idrissi, H. Labrim, L. Bahmad, and A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021).CrossRef S. Idrissi, H. Labrim, L. Bahmad, and A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021).CrossRef
4.
go back to reference Q. Han, S. Bae, P. Sun, Y. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253 (2016).CrossRef Q. Han, S. Bae, P. Sun, Y. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, and Y. Yang, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253 (2016).CrossRef
5.
go back to reference T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, and T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458 (2014).CrossRef T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, and T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458 (2014).CrossRef
6.
go back to reference F. Cordero, F. Craciun, F. Trequattrini, A. Generosi, B. Paci, A.M. Paoletti, and G. Pennesi, Stability of cubic FAPbI3 from x-ray diffraction, anelastic, and dielectric measurements. J. Phys. Chem. Lett. 10, 2463 (2019).CrossRef F. Cordero, F. Craciun, F. Trequattrini, A. Generosi, B. Paci, A.M. Paoletti, and G. Pennesi, Stability of cubic FAPbI3 from x-ray diffraction, anelastic, and dielectric measurements. J. Phys. Chem. Lett. 10, 2463 (2019).CrossRef
7.
go back to reference W.-J. Yin, T. Shi, and Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653 (2014).CrossRef W.-J. Yin, T. Shi, and Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653 (2014).CrossRef
8.
go back to reference H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress, F.T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C.E. Avalos, B.I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, and M. Grätzel, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).CrossRef H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress, F.T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C.E. Avalos, B.I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, and M. Grätzel, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).CrossRef
9.
go back to reference A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, and O.M. Bakr, Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1, 32 (2016).CrossRef A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, and O.M. Bakr, Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1, 32 (2016).CrossRef
10.
go back to reference S. Monika, S.K. Pachori, and A.S. Verma, An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 31, 18004 (2020).CrossRef S. Monika, S.K. Pachori, and A.S. Verma, An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 31, 18004 (2020).CrossRef
11.
go back to reference R. Mayengbam, Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies_an ab-initio investigation. Mater. Today Commun. 12, 101216 (2020).CrossRef R. Mayengbam, Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies_an ab-initio investigation. Mater. Today Commun. 12, 101216 (2020).CrossRef
12.
go back to reference Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, and C. Huang, Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4, 1700204 (2017).CrossRef Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, and C. Huang, Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4, 1700204 (2017).CrossRef
13.
go back to reference R. Jacobs, G. Luo, and D. Morgan, Materials discovery of stable and nontoxic halide perovskite materials for high-efficiency solar cells. Adv. Funct. Mater. 29, 1804354 (2019).CrossRef R. Jacobs, G. Luo, and D. Morgan, Materials discovery of stable and nontoxic halide perovskite materials for high-efficiency solar cells. Adv. Funct. Mater. 29, 1804354 (2019).CrossRef
14.
go back to reference Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, and X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl. 55, 3447 (2016).CrossRef Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, and X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl. 55, 3447 (2016).CrossRef
15.
go back to reference F. Valadares, I. Guilhon, L.K. Teles, and M. Marques, Electronic structure panorama of halide perovskites: approximated DFT−1/2 quasiparticle and relativistic corrections. J. Phys. Chem. C 124, 18390 (2020).CrossRef F. Valadares, I. Guilhon, L.K. Teles, and M. Marques, Electronic structure panorama of halide perovskites: approximated DFT1/2 quasiparticle and relativistic corrections. J. Phys. Chem. C 124, 18390 (2020).CrossRef
16.
go back to reference W. Pu, W. Xiao, J. Wang, X. Li, and L. Wang, Screening of perovskite materials for solar cell applications by first-principles calculations. Mater. Des. 198, 109387 (2021).CrossRef W. Pu, W. Xiao, J. Wang, X. Li, and L. Wang, Screening of perovskite materials for solar cell applications by first-principles calculations. Mater. Des. 198, 109387 (2021).CrossRef
17.
go back to reference Y.E. Arfaoui, M. Khenfouch, and N. Habiballah, Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023).CrossRef Y.E. Arfaoui, M. Khenfouch, and N. Habiballah, Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, 100554 (2023).CrossRef
18.
go back to reference Y. El Arfaoui, M. Khenfouch, and N. Habiballah, DFT and SCAPS-1D calculations of FASnI3-based perovskite solar cell using ZnO as an electron transport layer. Eur. Phys. J. Appl. Phys. 98, 60 (2023).CrossRef Y. El Arfaoui, M. Khenfouch, and N. Habiballah, DFT and SCAPS-1D calculations of FASnI3-based perovskite solar cell using ZnO as an electron transport layer. Eur. Phys. J. Appl. Phys. 98, 60 (2023).CrossRef
19.
go back to reference P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).CrossRef P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).CrossRef
20.
go back to reference J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).CrossRef J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).CrossRef
21.
go back to reference J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).CrossRef J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).CrossRef
22.
go back to reference P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399 (1990).CrossRef P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399 (1990).CrossRef
23.
go back to reference D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRef D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRef
24.
go back to reference D.R. Hamann, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979).CrossRef D.R. Hamann, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979).CrossRef
25.
go back to reference A.D. Corso and A.M. Conte, Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B 71, 115106 (2005).CrossRef A.D. Corso and A.M. Conte, Spin-orbit coupling with ultrasoft pseudopotentials: application to Au and Pt. Phys. Rev. B 71, 115106 (2005).CrossRef
26.
go back to reference H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRef H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRef
27.
go back to reference T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992).CrossRef T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992).CrossRef
28.
go back to reference K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008).CrossRef K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008).CrossRef
29.
go back to reference M. Roknuzzaman, J.A. Alarco, H. Wang, A. Du, T. Tesfamichael, and K. Ostrikov, Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics. Comput. Mater. Sci. 169, 109118 (2019).CrossRef M. Roknuzzaman, J.A. Alarco, H. Wang, A. Du, T. Tesfamichael, and K. Ostrikov, Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics. Comput. Mater. Sci. 169, 109118 (2019).CrossRef
30.
go back to reference M.R. Filip and F. Giustino, Computational screening of homovalent lead substitution in organic-inorganic halide perovskites. J. Phys. Chem. C 120, 166 (2016).CrossRef M.R. Filip and F. Giustino, Computational screening of homovalent lead substitution in organic-inorganic halide perovskites. J. Phys. Chem. C 120, 166 (2016).CrossRef
31.
go back to reference Y.S. Handayani, E.D. Indari, R. Hidayat, Y. Othsubo, and S. Kimura, Understanding the role of organic cations on the electronic structure of lead iodide perovskite from their UV photoemission spectra and their electronic structures calculated by DFT method. Mater. Res. Express 6, 084009 (2019).CrossRef Y.S. Handayani, E.D. Indari, R. Hidayat, Y. Othsubo, and S. Kimura, Understanding the role of organic cations on the electronic structure of lead iodide perovskite from their UV photoemission spectra and their electronic structures calculated by DFT method. Mater. Res. Express 6, 084009 (2019).CrossRef
32.
go back to reference U.-G. Jong, C.-J. Yu, Y.-S. Kim, Y.-H. Kye, and C.-H. Kim, First-principles study on the electronic and optical properties of inorganic perovskite Rb1−xCsxPbI3 for solar cell applications. Phys. Rev. B 98, 125116 (2018).CrossRef U.-G. Jong, C.-J. Yu, Y.-S. Kim, Y.-H. Kye, and C.-H. Kim, First-principles study on the electronic and optical properties of inorganic perovskite Rb1xCsxPbI3 for solar cell applications. Phys. Rev. B 98, 125116 (2018).CrossRef
33.
go back to reference F.F. Targhi, Y.S. Jalili, and F. Kanjouri, MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results Phys. 10, 616 (2018).CrossRef F.F. Targhi, Y.S. Jalili, and F. Kanjouri, MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results Phys. 10, 616 (2018).CrossRef
34.
go back to reference H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).CrossRef H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).CrossRef
35.
go back to reference W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).CrossRef W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).CrossRef
36.
go back to reference D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland, Kramers-Krönig relations in nonlinear optics. Opt. Quantum Electron. 24, 1 (1992).CrossRef D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland, Kramers-Krönig relations in nonlinear optics. Opt. Quantum Electron. 24, 1 (1992).CrossRef
37.
go back to reference L. Peng and W. Xie, Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3. RSC Adv. 10, 14679 (2020).CrossRef L. Peng and W. Xie, Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3. RSC Adv. 10, 14679 (2020).CrossRef
38.
go back to reference F. Iannone, F. Ambrosino, G. Bracco, M. De Rosa, A. Funel, G. Guarnieri, S. Migliori, F. Palombi, G. Ponti, G. Santomauro, and P. Procacci, CRESCO ENEA HPC clusters: a working example of a multifabric GPFS spectrum scale layout. 2019 International Conference on High Performance Computing Simulation HPCS (IEEE, Dublin, Ireland, 2019), p. 1051. F. Iannone, F. Ambrosino, G. Bracco, M. De Rosa, A. Funel, G. Guarnieri, S. Migliori, F. Palombi, G. Ponti, G. Santomauro, and P. Procacci, CRESCO ENEA HPC clusters: a working example of a multifabric GPFS spectrum scale layout. 2019 International Conference on High Performance Computing Simulation HPCS (IEEE, Dublin, Ireland, 2019), p. 1051.
39.
go back to reference A. Mariano, G. Damato, F. Ambrosino, G. Aprea, F. Buonocore, M. Celino, A. Colavincenzo, M. Fina, A. Funel, S. Giusepponi, G. Guarnieri, F. Palombi, S. Pierattini, G. Ponti, G. Santomauro, G. Bracco, and S. Migliori, Fast access to remote objects 2.0 a renewed gateway to ENEAGRID distributed computing resources. Futur. Gener. Comput. Syst. 94, 920 (2019).CrossRef A. Mariano, G. Damato, F. Ambrosino, G. Aprea, F. Buonocore, M. Celino, A. Colavincenzo, M. Fina, A. Funel, S. Giusepponi, G. Guarnieri, F. Palombi, S. Pierattini, G. Ponti, G. Santomauro, G. Bracco, and S. Migliori, Fast access to remote objects 2.0 a renewed gateway to ENEAGRID distributed computing resources. Futur. Gener. Comput. Syst. 94, 920 (2019).CrossRef
Metadata
Title
A DFT and Time-dependent DFT Investigation of the Structural, Electronic and Optical Properties of Lead-free FAMgI3 Perovskite for Photovoltaic Applications
Authors
Youssef El Arfaoui
Mohammed Khenfouch
Nabil Habiballah
Publication date
21-11-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 2/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10801-3

Other articles of this Issue 2/2024

Journal of Electronic Materials 2/2024 Go to the issue