Skip to main content
Top
Published in: Cluster Computing 3/2019

07-12-2017

RETRACTED ARTICLE: A dynamic clustering based method in community detection

Authors: Rui Zhang, Zhigang Jin, Peixuan Xu, Xiaohui Liu

Published in: Cluster Computing | Special Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social networks are growing, community detection has become one of the hot topics in social network research. As various types of social networks continue to emerge, universal community detection approaches are becoming increasingly important. As the real community division is dynamic, the community structure will appear or disappear with the passage of time. Therefore, the authenticity and real-time of the division become the core foundation of community detection, and the design of a real-time algorithm based on real division has great challenges. In this paper, we propose a dynamic community detection algorithm dynamic clustering by fast search and find of density peaks (D-CFSFDP) based on the partition of nodes-follow relationships to improve the accuracy and adaptability of real complex community detection. In D-CFSFDP, a distance metric based on trust is defined, the user relationship in the social network is quantified as a distance matrix, and the size of the matrix element is used to measure the degree of the user relationship. Then we use kernel density estimation on the distance matrix, and compile the statistics of the impact of each node in the network. We combine the improved KD-Tree model and mean integrated squared error criterion to improve the calculation flow, so that it adapts to different sizes of data sets to improve the calculation accuracy. Based on the principle of density peak clustering and the community attributes, the internal structure and natural outside structure of the community can be obtained according to the distance between the nodes. Finally, the remaining nodes are allocated by distance to the corresponding community to complete the community division. The static community division is further extended to a dynamic detection algorithm that gets linear time complexity. Therefore, we can change the community structure by updating the node relationships in the network. Through the visualization software we can observed that, the D-CFSFDP algorithm give the results of community division with a clear natural and internal hierarchical structure. With the increase of community scale and difficulty of division, D-CFSFDP algorithm has excellent stability. In the real data set and the Douban network, the community division is more close to the real division result, the adaptability is good and the feasibility and validity are verified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Newman, M.E.: Communities, modules and large-scale structure in networks. Nat. Phys. 8(1), 25 (2012)CrossRef Newman, M.E.: Communities, modules and large-scale structure in networks. Nat. Phys. 8(1), 25 (2012)CrossRef
3.
go back to reference Hric, D., Darst, R.K., Fortunato, S.: Community detection in networks: structural communities versus ground truth. Phys. Rev. E 90(6), 062805 (2014)CrossRef Hric, D., Darst, R.K., Fortunato, S.: Community detection in networks: structural communities versus ground truth. Phys. Rev. E 90(6), 062805 (2014)CrossRef
4.
5.
go back to reference Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Physica A 388(8), 1706–1712 (2009)CrossRef Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Physica A 388(8), 1706–1712 (2009)CrossRef
6.
go back to reference Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)CrossRef Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)CrossRef
7.
go back to reference Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)CrossRef Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)CrossRef
8.
go back to reference Muff, S., Rao, F., Caflisch, A.: Local modularity measure for network clusterizations. Phys. Rev. E 72(5), 056107 (2005)CrossRef Muff, S., Rao, F., Caflisch, A.: Local modularity measure for network clusterizations. Phys. Rev. E 72(5), 056107 (2005)CrossRef
9.
go back to reference Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRef Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRef
10.
go back to reference Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008(10), P10008 (2008)CrossRefMATH Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008(10), P10008 (2008)CrossRefMATH
11.
go back to reference Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)CrossRef Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)CrossRef
12.
13.
go back to reference Donetti, L., Munoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech. 2004(10), P10012 (2004)CrossRefMATH Donetti, L., Munoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech. 2004(10), P10012 (2004)CrossRefMATH
14.
go back to reference Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24(3), 515–554 (2012)CrossRef Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24(3), 515–554 (2012)CrossRef
15.
go back to reference Van Dongen, S.M.: Graph clustering by flow simulation (Doctoral dissertation) (2001) Van Dongen, S.M.: Graph clustering by flow simulation (Doctoral dissertation) (2001)
16.
go back to reference Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRef Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRef
17.
go back to reference Huang, J., Sun, H., Liu, Y., Song, Q., Weninger, T.: Towards online multiresolution community detection in large-scale networks. PLoS ONE 6(8), e23829 (2011)CrossRef Huang, J., Sun, H., Liu, Y., Song, Q., Weninger, T.: Towards online multiresolution community detection in large-scale networks. PLoS ONE 6(8), e23829 (2011)CrossRef
18.
go back to reference Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)CrossRef Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)CrossRef
19.
go back to reference Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large networks. Web Intell. Agent Syst. 6(4), 387–400 (2008)CrossRef Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large networks. Web Intell. Agent Syst. 6(4), 387–400 (2008)CrossRef
20.
go back to reference Chen, J., Zaïane, O., Goebel, R.: Local community identification in social networks. In: Social Network Analysis and Mining, 2009. ASONAM’09. International Conference on Advances, pp. 237–242. IEEE (2009) Chen, J., Zaïane, O., Goebel, R.: Local community identification in social networks. In: Social Network Analysis and Mining, 2009. ASONAM’09. International Conference on Advances, pp. 237–242. IEEE (2009)
21.
go back to reference Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels under constraints. Phys. Rev. E 80(2), 026129 (2009)CrossRef Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels under constraints. Phys. Rev. E 80(2), 026129 (2009)CrossRef
22.
go back to reference Leung, I.X., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection in large networks. Phys. Rev. E 79(6), 066107 (2009)CrossRef Leung, I.X., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection in large networks. Phys. Rev. E 79(6), 066107 (2009)CrossRef
23.
go back to reference Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)CrossRefMATH Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)CrossRefMATH
24.
go back to reference Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78(2), 026109 (2008)CrossRef Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78(2), 026109 (2008)CrossRef
25.
go back to reference Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)MathSciNetCrossRefMATH Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)MathSciNetCrossRefMATH
26.
go back to reference Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. arXiv preprint arXiv:0903.3178 (2009) Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. arXiv preprint arXiv:​0903.​3178 (2009)
27.
go back to reference Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRef
28.
go back to reference Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)CrossRef Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)CrossRef
29.
go back to reference Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)CrossRef Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)CrossRef
30.
go back to reference Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev. E 67(4), 041908 (2003)CrossRef Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev. E 67(4), 041908 (2003)CrossRef
31.
go back to reference Liu, W., Pellegrini, M., Wang, X.: Detecting communities based on network topology. Sci. Rep. 4, 5739 (2014)CrossRef Liu, W., Pellegrini, M., Wang, X.: Detecting communities based on network topology. Sci. Rep. 4, 5739 (2014)CrossRef
32.
go back to reference Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)MathSciNetCrossRefMATH Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)MathSciNetCrossRefMATH
33.
go back to reference Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)CrossRef Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)CrossRef
34.
go back to reference Hennig, C., Hausdorf, B.: Design of dissimilarity measures: a new dissimilarity between species distribution areas. In: Data Science and Classification, pp. 29–37. Springer, Berlin (2006) Hennig, C., Hausdorf, B.: Design of dissimilarity measures: a new dissimilarity between species distribution areas. In: Data Science and Classification, pp. 29–37. Springer, Berlin (2006)
35.
go back to reference Takaffoli, M.: Community evolution in dynamic social networks–challenges and problems. In: Proceedings 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 1211–1214. IEEE (2011) Takaffoli, M.: Community evolution in dynamic social networks–challenges and problems. In: Proceedings 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 1211–1214. IEEE (2011)
36.
go back to reference Giatsoglou, M., Vakali, A.: Capturing social data evolution using graph clustering. IEEE Internet Comput. 17(1), 74–79 (2013)CrossRef Giatsoglou, M., Vakali, A.: Capturing social data evolution using graph clustering. IEEE Internet Comput. 17(1), 74–79 (2013)CrossRef
37.
go back to reference Cuzzocrea, A., Folino, F., Pizzuti, C.: DynamicNet: an effective and efficient algorithm for supporting community evolution detection in time-evolving information networks. In: Proceedings of the 17th International Database Engineering & Applications Symposium, pp. 148–153. ACM (2013) Cuzzocrea, A., Folino, F., Pizzuti, C.: DynamicNet: an effective and efficient algorithm for supporting community evolution detection in time-evolving information networks. In: Proceedings of the 17th International Database Engineering & Applications Symposium, pp. 148–153. ACM (2013)
38.
go back to reference Zang, L., Wang, H., Ma, X.F.: Community evolution mining in dynamic social network. Jisuanji Gongcheng/ Comput. Eng. 39(6), 12 (2013) Zang, L., Wang, H., Ma, X.F.: Community evolution mining in dynamic social network. Jisuanji Gongcheng/ Comput. Eng. 39(6), 12 (2013)
39.
go back to reference Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: Proceedings IEEE INFOCOM, 2011, pp. 2282–2290. IEEE (2011) Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: Proceedings IEEE INFOCOM, 2011, pp. 2282–2290. IEEE (2011)
40.
go back to reference Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefMATH Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefMATH
41.
go back to reference Ziegler, C.N., Lausen, G.: Analyzing correlation between trust and user similarity in online communities. In: ITrust, Vol. 2995, pp. 251–265 (2004) Ziegler, C.N., Lausen, G.: Analyzing correlation between trust and user similarity in online communities. In: ITrust, Vol. 2995, pp. 251–265 (2004)
Metadata
Title
RETRACTED ARTICLE: A dynamic clustering based method in community detection
Authors
Rui Zhang
Zhigang Jin
Peixuan Xu
Xiaohui Liu
Publication date
07-12-2017
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 3/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1472-5

Other articles of this Special Issue 3/2019

Cluster Computing 3/2019 Go to the issue

Premium Partner