Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 11-12/2021

02-03-2021 | ORIGINAL ARTICLE

A force model for face grinding using digital graphic scanning (DGS) method

Authors: Wei Feng, Kun Zhang, Sijie Cai, Cong Sun, Weifang Sun, Baoguo Liu

Published in: The International Journal of Advanced Manufacturing Technology | Issue 11-12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The prediction of grinding force has great significance in improving grinding quality and efficiency. This paper presents a predictive force model in plunge facing grinding considering both the cutting mechanism of single grain and the random nature of wheel topography. The model includes cutting deformation force and frictional force, which mainly depend on undeformed chip cross-section area and wear flat area of grains. In order to overcome the difficulties for calculating the cross-section area of irregular polyhedral grains, a digital graphic scanning (DGS) method is proposed in this research. Single grain scratch test and hardness test are carried out to obtain the model coefficients. The validation experiments performed on a face grinding machine show a good match of the predictive and measured forces for different grinding parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Denkena B, Grove T, Behrens L (2015) Significant influence factors on the grinding tool wear and cutting mechanisms during grinding of PCBN inserts. Prod Eng 9:187–193CrossRef Denkena B, Grove T, Behrens L (2015) Significant influence factors on the grinding tool wear and cutting mechanisms during grinding of PCBN inserts. Prod Eng 9:187–193CrossRef
2.
go back to reference Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55:667–696CrossRef Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55:667–696CrossRef
3.
go back to reference Werner G (1978) Influence of work material on grinding forces. CIRP Ann Manuf Technol 27:243–248 Werner G (1978) Influence of work material on grinding forces. CIRP Ann Manuf Technol 27:243–248
4.
go back to reference Li L, Fu J, Peklenik J (1980) A study of grinding force mathematical model. CIRP Ann Manuf Technol 29(1):245–249CrossRef Li L, Fu J, Peklenik J (1980) A study of grinding force mathematical model. CIRP Ann Manuf Technol 29(1):245–249CrossRef
5.
go back to reference Durgumahanti USP, Singh V, Rao PV (2010) A new model for grinding force prediction and analysis. Int J Mach Tools Manuf 50:231–240CrossRef Durgumahanti USP, Singh V, Rao PV (2010) A new model for grinding force prediction and analysis. Int J Mach Tools Manuf 50:231–240CrossRef
6.
go back to reference Aslan D, Budak E (2014) Semi-analytical force model for grinding operations. Procedia CIRP 14:7–12CrossRef Aslan D, Budak E (2014) Semi-analytical force model for grinding operations. Procedia CIRP 14:7–12CrossRef
7.
go back to reference Hecker R, Liang S, Wu X, Xia P, Jin D (2007) Grinding force and power modeling based on chip thickness analysis. Int J Adv Manuf Technol 33:449–459CrossRef Hecker R, Liang S, Wu X, Xia P, Jin D (2007) Grinding force and power modeling based on chip thickness analysis. Int J Adv Manuf Technol 33:449–459CrossRef
8.
go back to reference Chang H, Wang J (2008) A stochastic grinding force model considering random grit distribution. Int J Mach Tools Manuf 48(12):1335–1344CrossRef Chang H, Wang J (2008) A stochastic grinding force model considering random grit distribution. Int J Mach Tools Manuf 48(12):1335–1344CrossRef
9.
go back to reference Wang D, Ge P, Bi W, Jiang J (2014) Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition. Int J Adv Manuf Technol 70(9–12):2111–2123CrossRef Wang D, Ge P, Bi W, Jiang J (2014) Grain trajectory and grain workpiece contact analyses for modeling of grinding force and energy partition. Int J Adv Manuf Technol 70(9–12):2111–2123CrossRef
10.
go back to reference Azizi A, Mohamadyari M (2015) Modeling and analysis of grinding forces based on the single grit scratch. Int J Adv Manuf Technol 78(5–8):1223–1231CrossRef Azizi A, Mohamadyari M (2015) Modeling and analysis of grinding forces based on the single grit scratch. Int J Adv Manuf Technol 78(5–8):1223–1231CrossRef
11.
go back to reference Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97CrossRef Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97CrossRef
12.
go back to reference Li H, Yu T, Wang Z, Zhu L, Wang W (2017) Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. Int J Mech Sci 126:319–339CrossRef Li H, Yu T, Wang Z, Zhu L, Wang W (2017) Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. Int J Mech Sci 126:319–339CrossRef
13.
go back to reference Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tools Manuf 122:66–80CrossRef Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tools Manuf 122:66–80CrossRef
14.
go back to reference Dai C, Yin Z, Ding W, Zhu Y (2019) Grinding force and energy modeling of textured monolayer CBN wheels considering undeformed chip thickness nonuniformity. Int J Mech Sci 157-158:221–230CrossRef Dai C, Yin Z, Ding W, Zhu Y (2019) Grinding force and energy modeling of textured monolayer CBN wheels considering undeformed chip thickness nonuniformity. Int J Mech Sci 157-158:221–230CrossRef
15.
go back to reference Warnecke G, Zitt U (1998) Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Ann Manuf Technol 47(1):265–270CrossRef Warnecke G, Zitt U (1998) Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Ann Manuf Technol 47(1):265–270CrossRef
16.
go back to reference Aurich J, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5(3):164–174CrossRef Aurich J, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5(3):164–174CrossRef
17.
go back to reference Xie G (2009) The investigation of mechanism and thermal phenomena in high speed deep grinding of advanced ceramic. Hunan University Xie G (2009) The investigation of mechanism and thermal phenomena in high speed deep grinding of advanced ceramic. Hunan University
18.
go back to reference Siebrecht T, Rausch S, Kersting P, Biermann D (2014) Grinding process simulation of free-formed WC-Co hard material coated surfaces on machining centers using poisson-disk sampled dexel representations. CIRP J Manuf Sci Technol 7:168–175CrossRef Siebrecht T, Rausch S, Kersting P, Biermann D (2014) Grinding process simulation of free-formed WC-Co hard material coated surfaces on machining centers using poisson-disk sampled dexel representations. CIRP J Manuf Sci Technol 7:168–175CrossRef
19.
go back to reference Feng W, Yao B, Yu XJ, Sun WF, Cao XC (2017) Simulation of grinding process for cemented carbide based on an integrated process-machine model. Int J Adv Manuf Technol 89(1):265–272CrossRef Feng W, Yao B, Yu XJ, Sun WF, Cao XC (2017) Simulation of grinding process for cemented carbide based on an integrated process-machine model. Int J Adv Manuf Technol 89(1):265–272CrossRef
20.
go back to reference Koshy P, Jain V, Lal G (1997) Stochastic simulation approach to modelling diamond wheel topography. Int J Mach Tools Manuf 37:751–761CrossRef Koshy P, Jain V, Lal G (1997) Stochastic simulation approach to modelling diamond wheel topography. Int J Mach Tools Manuf 37:751–761CrossRef
21.
go back to reference Liu Y, Warkentin A, Bauer R, Gong Y (2013) Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations. Precis Eng 37(3):758–764CrossRef Liu Y, Warkentin A, Bauer R, Gong Y (2013) Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations. Precis Eng 37(3):758–764CrossRef
22.
go back to reference Darafon A, Warkentin A, Bauer R (2013) 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding. Int J Adv Manuf Technol 66(9-12):1715–1724CrossRef Darafon A, Warkentin A, Bauer R (2013) 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding. Int J Adv Manuf Technol 66(9-12):1715–1724CrossRef
Metadata
Title
A force model for face grinding using digital graphic scanning (DGS) method
Authors
Wei Feng
Kun Zhang
Sijie Cai
Cong Sun
Weifang Sun
Baoguo Liu
Publication date
02-03-2021
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 11-12/2021
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-06798-w

Other articles of this Issue 11-12/2021

The International Journal of Advanced Manufacturing Technology 11-12/2021 Go to the issue

Premium Partners