Skip to main content
Top
Published in: Integrating Materials and Manufacturing Innovation 4/2022

31-10-2022 | Technical Article

A Framework for the Optimal Selection of High-Throughput Data Collection Workflows by Autonomous Experimentation Systems

Authors: Rohan Casukhela, Sriram Vijayan, Joerg R. Jinschek, Stephen R. Niezgoda

Published in: Integrating Materials and Manufacturing Innovation | Issue 4/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Autonomous experimentation systems have been used to greatly advance the Integrated Computational Materials Engineering paradigm. This paper outlines a framework that enables the design and selection of data collection workflows for autonomous experimentation systems. The framework first searches for data collection workflows that generate high-quality information and then selects the workflow that generates the highest-value information as per a user-defined objective. We employ this framework to select the optimal high-throughput workflow for the characterization of an additively manufactured Ti–6Al–4V sample using a deep-learning based image denoiser. The selected workflow reduced the collection time of backscattered electron scanning electron microscopy images by a factor of 5 times as compared to the case study’s benchmark workflow, and by a factor of 85 times as compared to the workflow used in a previously published study.
Literature
1.
go back to reference Stach E, DeCost B, Kusne AG, Hattrick-Simpers J, Brown KA, Reyes KG, Schrier J, Billinge S, Buonassisi T, Foster I et al (2021) Autonomous experimentation systems for materials development: a community perspective. Matter 4(9):2702–2726CrossRef Stach E, DeCost B, Kusne AG, Hattrick-Simpers J, Brown KA, Reyes KG, Schrier J, Billinge S, Buonassisi T, Foster I et al (2021) Autonomous experimentation systems for materials development: a community perspective. Matter 4(9):2702–2726CrossRef
2.
go back to reference Flores-Leonar MM, Mejía-Mendoza LM, Aguilar-Granda A, Sanchez-Lengeling B, Tribukait H, Amador-Bedolla C, Aspuru-Guzik A (2020) Materials acceleration platforms: on the way to autonomous experimentation. Curr Opin Green Sustain Chem 25:100370CrossRef Flores-Leonar MM, Mejía-Mendoza LM, Aguilar-Granda A, Sanchez-Lengeling B, Tribukait H, Amador-Bedolla C, Aspuru-Guzik A (2020) Materials acceleration platforms: on the way to autonomous experimentation. Curr Opin Green Sustain Chem 25:100370CrossRef
3.
go back to reference Szymanski NJ, Zeng Y, Huo H, Bartel CJ, Kim H, Ceder G (2021) Toward autonomous design and synthesis of novel inorganic materials. Mater Horiz 8(8):2169–2198CrossRef Szymanski NJ, Zeng Y, Huo H, Bartel CJ, Kim H, Ceder G (2021) Toward autonomous design and synthesis of novel inorganic materials. Mater Horiz 8(8):2169–2198CrossRef
4.
go back to reference Roch LM, Häse F, Kreisbeck C, Tamayo-Mendoza T, Yunker LPE, Hein JE, Aspuru-Guzik A (2018) Chemos: orchestrating autonomous experimentation. Sci Robot 3(19):eaat5559CrossRef Roch LM, Häse F, Kreisbeck C, Tamayo-Mendoza T, Yunker LPE, Hein JE, Aspuru-Guzik A (2018) Chemos: orchestrating autonomous experimentation. Sci Robot 3(19):eaat5559CrossRef
5.
go back to reference Montoya JH, Aykol M, Anapolsky A, Gopal CB, Herring PK, Hummelshøj JS, Hung L, Kwon H-K, Schweigert D, Sun S et al (2022) Toward autonomous materials research: recent progress and future challenges. Appl Phys Rev 9(1):011405CrossRef Montoya JH, Aykol M, Anapolsky A, Gopal CB, Herring PK, Hummelshøj JS, Hung L, Kwon H-K, Schweigert D, Sun S et al (2022) Toward autonomous materials research: recent progress and future challenges. Appl Phys Rev 9(1):011405CrossRef
6.
go back to reference Ling J, Hutchinson M, Antono E, Paradiso S, Meredig B (2017) High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integr Mater Manuf Innov 6(3):207–217CrossRef Ling J, Hutchinson M, Antono E, Paradiso S, Meredig B (2017) High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integr Mater Manuf Innov 6(3):207–217CrossRef
7.
go back to reference Lookman T, Balachandran PV, Xue D, Hogden J, Theiler J (2017) Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci 21(3):121–128CrossRef Lookman T, Balachandran PV, Xue D, Hogden J, Theiler J (2017) Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci 21(3):121–128CrossRef
8.
go back to reference Balachandran PV (2020) Adaptive machine learning for efficient materials design. MRS Bull 45(7):579–586CrossRef Balachandran PV (2020) Adaptive machine learning for efficient materials design. MRS Bull 45(7):579–586CrossRef
9.
go back to reference Xu H-Y, Shi T-N, Zhao H, Jin L-G, Wang F-C, Wang C-Y, Qi S-Y (2016) Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Front Mater Sci 10(1):45–55CrossRef Xu H-Y, Shi T-N, Zhao H, Jin L-G, Wang F-C, Wang C-Y, Qi S-Y (2016) Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Front Mater Sci 10(1):45–55CrossRef
10.
go back to reference Christensen M, Yunker LPE, Adedeji F, Häse F, Roch LM, Gensch T, dos Passos GG, Zepel T, Sigman MS, Aspuru-Guzik A et al (2021) Data-science driven autonomous process optimization. Commun Chem 4(1):1–12CrossRef Christensen M, Yunker LPE, Adedeji F, Häse F, Roch LM, Gensch T, dos Passos GG, Zepel T, Sigman MS, Aspuru-Guzik A et al (2021) Data-science driven autonomous process optimization. Commun Chem 4(1):1–12CrossRef
11.
go back to reference Häse F, Matteo A, Hickman RJ, Roch LM, Christensen M, Liles E, Hein JE, Aspuru-Guzik A (2021) Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach Learn Sci Technol 2(3):035021CrossRef Häse F, Matteo A, Hickman RJ, Roch LM, Christensen M, Liles E, Hein JE, Aspuru-Guzik A (2021) Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach Learn Sci Technol 2(3):035021CrossRef
12.
go back to reference Ong SP (2019) Accelerating materials science with high-throughput computations and machine learning. Comput Mater Sci 161:143–150CrossRef Ong SP (2019) Accelerating materials science with high-throughput computations and machine learning. Comput Mater Sci 161:143–150CrossRef
13.
go back to reference Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Nardelli MB et al (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108:233–238CrossRef Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Nardelli MB et al (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108:233–238CrossRef
14.
go back to reference Maier WF (2019) Early years of high-throughput experimentation and combinatorial approaches in catalysis and materials science. ACS Comb Sci 21(6):437–444CrossRef Maier WF (2019) Early years of high-throughput experimentation and combinatorial approaches in catalysis and materials science. ACS Comb Sci 21(6):437–444CrossRef
15.
go back to reference Vasudevan RK, Choudhary K, Mehta A, Smith R, Kusne G, Tavazza F, Vlcek L, Ziatdinov M, Kalinin SV, Hattrick-Simpers J (2019) Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Commun 9(3):821–838CrossRef Vasudevan RK, Choudhary K, Mehta A, Smith R, Kusne G, Tavazza F, Vlcek L, Ziatdinov M, Kalinin SV, Hattrick-Simpers J (2019) Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Commun 9(3):821–838CrossRef
16.
go back to reference Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M et al (2012) AFLOWLIB.org: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227–235CrossRef Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M et al (2012) AFLOWLIB.org: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227–235CrossRef
17.
go back to reference Hattrick-Simpers JR, Gregoire JM, Kusne AG (2016) Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge. APL Mater 4(5):053211CrossRef Hattrick-Simpers JR, Gregoire JM, Kusne AG (2016) Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge. APL Mater 4(5):053211CrossRef
18.
go back to reference Liu YH, Hu ZH, Suo ZG, Hu LZ, Feng LY, Gong XQ, Liu Y, Zhang JC (2019) High-throughput experiments facilitate materials innovation: a review. Sci China Technol Sci 62(4):521–545CrossRef Liu YH, Hu ZH, Suo ZG, Hu LZ, Feng LY, Gong XQ, Liu Y, Zhang JC (2019) High-throughput experiments facilitate materials innovation: a review. Sci China Technol Sci 62(4):521–545CrossRef
19.
go back to reference Pollice R, dos Passos Gomes G, Matteo A, Hickman RJ, Krenn M, Lavigne C, Lindner-D’Addario M, Nigam AK, Ser CT, Yao Z et al (2021) Data-driven strategies for accelerated materials design. Acc Chem Res 54(4):849–860CrossRef Pollice R, dos Passos Gomes G, Matteo A, Hickman RJ, Krenn M, Lavigne C, Lindner-D’Addario M, Nigam AK, Ser CT, Yao Z et al (2021) Data-driven strategies for accelerated materials design. Acc Chem Res 54(4):849–860CrossRef
20.
go back to reference Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJL et al (2022) Recent advances and applications of deep learning methods in materials science. npj Comput Mater 8(1):1–26CrossRef Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJL et al (2022) Recent advances and applications of deep learning methods in materials science. npj Comput Mater 8(1):1–26CrossRef
21.
go back to reference Venugopal V, Sahoo S, Zaki M, Agarwal M, Gosvami NN, Krishnan NMA (2021) Looking through glass: knowledge discovery from materials science literature using natural language processing. Patterns 2(7):100290CrossRef Venugopal V, Sahoo S, Zaki M, Agarwal M, Gosvami NN, Krishnan NMA (2021) Looking through glass: knowledge discovery from materials science literature using natural language processing. Patterns 2(7):100290CrossRef
22.
go back to reference Shetty P, Ramprasad R (2021) Automated knowledge extraction from polymer literature using natural language processing. Iscience 24(1):101922CrossRef Shetty P, Ramprasad R (2021) Automated knowledge extraction from polymer literature using natural language processing. Iscience 24(1):101922CrossRef
23.
go back to reference Dieb S, Amano K, Tanabe K, Sato D, Ishii M, Tanifuji M (2021) Creating research topic map for NIMS SAMURAI database using natural language processing approach. Sci Technol Adv Mater Methods 1(1):2–11 Dieb S, Amano K, Tanabe K, Sato D, Ishii M, Tanifuji M (2021) Creating research topic map for NIMS SAMURAI database using natural language processing approach. Sci Technol Adv Mater Methods 1(1):2–11
24.
go back to reference Nikolaev P, Hooper D, Webber F, Rao R, Decker K, Krein M, Poleski J, Barto R, Maruyama B (2016) Autonomy in materials research: a case study in carbon nanotube growth. npj Comput Mater 2(1):1–6CrossRef Nikolaev P, Hooper D, Webber F, Rao R, Decker K, Krein M, Poleski J, Barto R, Maruyama B (2016) Autonomy in materials research: a case study in carbon nanotube growth. npj Comput Mater 2(1):1–6CrossRef
25.
go back to reference Gongora AE, Xu B, Perry W, Okoye C, Riley P, Reyes KG, Morgan EF, Brown KA (2020) A Bayesian experimental autonomous researcher for mechanical design. Sci Adv 6(15):eaaz1708CrossRef Gongora AE, Xu B, Perry W, Okoye C, Riley P, Reyes KG, Morgan EF, Brown KA (2020) A Bayesian experimental autonomous researcher for mechanical design. Sci Adv 6(15):eaaz1708CrossRef
26.
go back to reference Kusne AG, Yu H, Wu C, Zhang H, Hattrick-Simpers J, DeCost B, Sarker S, Oses C, Toher C, Curtarolo S, Davydov AV (2020) On-the-fly closed-loop materials discovery via Bayesian active learning. Nat Commun 11(1):1–11CrossRef Kusne AG, Yu H, Wu C, Zhang H, Hattrick-Simpers J, DeCost B, Sarker S, Oses C, Toher C, Curtarolo S, Davydov AV (2020) On-the-fly closed-loop materials discovery via Bayesian active learning. Nat Commun 11(1):1–11CrossRef
27.
go back to reference Kumar K, Pooleery A, Madhusoodanan K, Singh RN, Chakravartty JK, Dutta BK, Sinha RK (2014) Use of miniature tensile specimen for measurement of mechanical properties. Procedia Eng 86:899–909CrossRef Kumar K, Pooleery A, Madhusoodanan K, Singh RN, Chakravartty JK, Dutta BK, Sinha RK (2014) Use of miniature tensile specimen for measurement of mechanical properties. Procedia Eng 86:899–909CrossRef
28.
go back to reference SAE Taxonomy (2021) Definitions for terms related to driving automation systems for on-road motor vehicles. Publication J3016_202104. Society of Automotive Engineers SAE Taxonomy (2021) Definitions for terms related to driving automation systems for on-road motor vehicles. Publication J3016_202104. Society of Automotive Engineers
29.
go back to reference Shao M, Vijayan S, Nandwana P, Jinschek JR (2020) The effect of beam scan strategies on microstructural variations in Ti–6Al–4V fabricated by electron beam powder bed fusion. Mater Des 196:109165CrossRef Shao M, Vijayan S, Nandwana P, Jinschek JR (2020) The effect of beam scan strategies on microstructural variations in Ti–6Al–4V fabricated by electron beam powder bed fusion. Mater Des 196:109165CrossRef
30.
go back to reference Casukhela R, Vijayan S, Jacobsen M, Fourman J, Hepler K, Shao M, Gupta A, Jinschek J (2021) Towards the development of a multi-modal community-based am database. Microsc Microanal 27(S1):1090–1091CrossRef Casukhela R, Vijayan S, Jacobsen M, Fourman J, Hepler K, Shao M, Gupta A, Jinschek J (2021) Towards the development of a multi-modal community-based am database. Microsc Microanal 27(S1):1090–1091CrossRef
31.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
32.
go back to reference Mohan S, Manzorro R, Vincent JL, Tang B, Sheth DY, Simoncelli EP, Matteson DS, Crozier PA, Fernandez-Granda C (2020) Deep denoising for scientific discovery: a case study in electron microscopy. arXiv:2010.12970 Mohan S, Manzorro R, Vincent JL, Tang B, Sheth DY, Simoncelli EP, Matteson DS, Crozier PA, Fernandez-Granda C (2020) Deep denoising for scientific discovery: a case study in electron microscopy. arXiv:​2010.​12970
33.
go back to reference de Haan K, Ballard ZS, Rivenson Y, Wu Y, Ozcan A (2019) Resolution enhancement in scanning electron microscopy using deep learning. Sci Rep 9(1):1–7 de Haan K, Ballard ZS, Rivenson Y, Wu Y, Ozcan A (2019) Resolution enhancement in scanning electron microscopy using deep learning. Sci Rep 9(1):1–7
34.
go back to reference Roels J, Vernaillen F, Kremer A, Gonçalves A, Aelterman J, Luong HQ, Goossens B, Philips W, Lippens S, Saeys Y (2020) An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat Commun 11(1):1–13CrossRef Roels J, Vernaillen F, Kremer A, Gonçalves A, Aelterman J, Luong HQ, Goossens B, Philips W, Lippens S, Saeys Y (2020) An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat Commun 11(1):1–13CrossRef
35.
go back to reference Zhang C, Han R, Zhang AR, Voyles PM (2020) Denoising atomic resolution 4d scanning transmission electron microscopy data with tensor singular value decomposition. Ultramicroscopy 219:113123CrossRef Zhang C, Han R, Zhang AR, Voyles PM (2020) Denoising atomic resolution 4d scanning transmission electron microscopy data with tensor singular value decomposition. Ultramicroscopy 219:113123CrossRef
36.
go back to reference Zeltmann S, Minor A, Ophus C (2020) Denoising of sparse three-and four-dimensional hyperspectral electron microscopy data using a total variational method. Microsc Microanal 26(S2):1724–1726CrossRef Zeltmann S, Minor A, Ophus C (2020) Denoising of sparse three-and four-dimensional hyperspectral electron microscopy data using a total variational method. Microsc Microanal 26(S2):1724–1726CrossRef
37.
go back to reference Mohan S, Manzorro R, Vincent JL, Tang B, Sheth DY, Simoncelli E, Matteson DS, Crozier PA, Fernandez-Granda C (2022) Deep denoising for scientific discovery: a case study in electron microscopy. IEEE Trans Comput Imaging 8:585–597CrossRef Mohan S, Manzorro R, Vincent JL, Tang B, Sheth DY, Simoncelli E, Matteson DS, Crozier PA, Fernandez-Granda C (2022) Deep denoising for scientific discovery: a case study in electron microscopy. IEEE Trans Comput Imaging 8:585–597CrossRef
39.
go back to reference Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304CrossRef Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304CrossRef
40.
go back to reference Chernoff H (1959) Sequential design of experiments. Ann Math Stat 30(3):755–770CrossRef Chernoff H (1959) Sequential design of experiments. Ann Math Stat 30(3):755–770CrossRef
41.
go back to reference Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with statistical models. J Artif Intell Res 4:129–145CrossRef Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with statistical models. J Artif Intell Res 4:129–145CrossRef
Metadata
Title
A Framework for the Optimal Selection of High-Throughput Data Collection Workflows by Autonomous Experimentation Systems
Authors
Rohan Casukhela
Sriram Vijayan
Joerg R. Jinschek
Stephen R. Niezgoda
Publication date
31-10-2022
Publisher
Springer International Publishing
Published in
Integrating Materials and Manufacturing Innovation / Issue 4/2022
Print ISSN: 2193-9764
Electronic ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00280-5

Other articles of this Issue 4/2022

Integrating Materials and Manufacturing Innovation 4/2022 Go to the issue

Thematic Section: First World Congress on Artificial Intelligence in Materials & Manufacturing 2022

Compound Knowledge Graph-Enabled AI Assistant for Accelerated Materials Discovery

Premium Partners