Skip to main content
Top
Published in: Meccanica 6/2021

30-07-2020 | Recent advances in Computational Mechanics and Innovative Materials

A generalized finite element method for three-dimensional fractures in fiber-reinforced composites

Authors: Phillipe D. Alves, Angelo Simone, C. Armando Duarte

Published in: Meccanica | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a methodology for the analysis of three-dimensional static fractures in fiber-reinforced materials. Fibers are discretely modeled using a modification of the embedded reinforcement method with bond Slip (mERS) that allows its combination with a generalized finite element method (GFEM) for three-dimensional fractures. Since the GFEM mesh does not need to fit fracture surfaces or fibers, the GFEM–mERS can handle fibers bridging across crack faces at arbitrary angles. The method is verified against three-dimensional FEM solutions using conformal discretizations for crack surfaces and fiber boundaries. The comparison of the method against experimental data and convergence studies of the h- and p-version of the method is also presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abaqus (2014) Version 6.14 documentation. Dassault Systemes Simulia Corporation, Providence, RI Abaqus (2014) Version 6.14 documentation. Dassault Systemes Simulia Corporation, Providence, RI
4.
go back to reference Balakrishnan S, Murray DW (1986) Finite element prediction of reinforced concrete behavior. Technical Report Structural Engineering Report No. 138, Department of Civil Engineering, The University of Alberta Balakrishnan S, Murray DW (1986) Finite element prediction of reinforced concrete behavior. Technical Report Structural Engineering Report No. 138, Department of Civil Engineering, The University of Alberta
6.
go back to reference Bolander JE, Saito S (1997) Discrete modeling of short-fiber reinforcement in cementitious composites. Adv Cement Based Mater 6(3):76–86CrossRef Bolander JE, Saito S (1997) Discrete modeling of short-fiber reinforcement in cementitious composites. Adv Cement Based Mater 6(3):76–86CrossRef
7.
go back to reference Bolander JE, Choi S, Duddukuri SR (2008) Fracture of fiber-reinforced cement composites: effects of fiber dispersion. Int J Fract 154(1–2):73–86CrossRef Bolander JE, Choi S, Duddukuri SR (2008) Fracture of fiber-reinforced cement composites: effects of fiber dispersion. Int J Fract 154(1–2):73–86CrossRef
8.
go back to reference Bouhala L, Makradi A, Belouettar S, Kiefer-Kamal H, Fréres P (2013) Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Compos B 55:352–361CrossRef Bouhala L, Makradi A, Belouettar S, Kiefer-Kamal H, Fréres P (2013) Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Compos B 55:352–361CrossRef
9.
go back to reference Caner FC, Bažant ZP, Wendner R (2013) Microplane model M7f for fiber reinforced concrete. Eng Fract Mech 105:41–57CrossRef Caner FC, Bažant ZP, Wendner R (2013) Microplane model M7f for fiber reinforced concrete. Eng Fract Mech 105:41–57CrossRef
11.
go back to reference Cusatis G, Pelessone D, Mencarelli A (2011) Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: theory. Cement Concrete Compos 33(9):881–890CrossRef Cusatis G, Pelessone D, Mencarelli A (2011) Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: theory. Cement Concrete Compos 33(9):881–890CrossRef
14.
go back to reference Elwi AE, Hrudey TM (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754CrossRef Elwi AE, Hrudey TM (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754CrossRef
15.
go back to reference Farahani BV, Tavares PJ, Belinha J, Moreira PMGP (2017) A fracture mechanics study of a compact tension specimen: digital image correlation, finite element and meshless method. In: 2nd International conference on structural integrity, ICSI 2017, vol 5, pp 920–927 Farahani BV, Tavares PJ, Belinha J, Moreira PMGP (2017) A fracture mechanics study of a compact tension specimen: digital image correlation, finite element and meshless method. In: 2nd International conference on structural integrity, ICSI 2017, vol 5, pp 920–927
16.
go back to reference Garzon J, O’Hara P, Duarte C, Buttlar W (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273. https://doi.org/10.1002/nme.4573CrossRefMATH Garzon J, O’Hara P, Duarte C, Buttlar W (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273. https://​doi.​org/​10.​1002/​nme.​4573CrossRefMATH
17.
go back to reference Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198MathSciNetCrossRef Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198MathSciNetCrossRef
19.
go back to reference Hartl H (2002) Development of a continuum-mechanics-based tool for 3D finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. PhD thesis, Graz University of Technology Hartl H (2002) Development of a continuum-mechanics-based tool for 3D finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. PhD thesis, Graz University of Technology
20.
go back to reference Heath M (1997) Scientific computing: an introductory survey. McGraw-Hill series in computer science. McGraw-Hill, Boston. ISBN 9780070276840 Heath M (1997) Scientific computing: an introductory survey. McGraw-Hill series in computer science. McGraw-Hill, Boston. ISBN 9780070276840
21.
go back to reference Jones A (2015) Solvent-based self-healing approaches for fiber-reinforced composites. PhD thesis, University of Illinois at Urbana-Champaign Jones A (2015) Solvent-based self-healing approaches for fiber-reinforced composites. PhD thesis, University of Illinois at Urbana-Champaign
22.
go back to reference Kang J, Kim K, Lim Y, Bolander J (2014) Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int J Solids Struct 51:1970–1979CrossRef Kang J, Kim K, Lim Y, Bolander J (2014) Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout. Int J Solids Struct 51:1970–1979CrossRef
23.
go back to reference Karimi M, Bayesteh H, Mohammadi S (2019) An adapting cohesive approach for crack-healing analysis in SMA fiber-reinforced composites. Comput Methods Appl Mech Eng 349:550–575MathSciNetCrossRef Karimi M, Bayesteh H, Mohammadi S (2019) An adapting cohesive approach for crack-healing analysis in SMA fiber-reinforced composites. Comput Methods Appl Mech Eng 349:550–575MathSciNetCrossRef
24.
go back to reference Kozicki J, Tejchman J (2010) Effect of steel fibres on concrete behavior in 2D and 3D simulations using lattice model. Arch Mech 62:1–28MATH Kozicki J, Tejchman J (2010) Effect of steel fibres on concrete behavior in 2D and 3D simulations using lattice model. Arch Mech 62:1–28MATH
25.
26.
go back to reference Kruzic JJ, Campbell JP, Ritchie RO (1999) On the fatigue behavior of g-based titanium aluminides: role of small cracks. Acta Mater 47:801–816CrossRef Kruzic JJ, Campbell JP, Ritchie RO (1999) On the fatigue behavior of g-based titanium aluminides: role of small cracks. Acta Mater 47:801–816CrossRef
27.
go back to reference Kunieda M, Ogura H, Ueda N, Nakamura H (2011) Tensile fracture process of strain hardening cementitious composites by means of three-dimensional meso-scale analysis. Cement Concrete Compos 33:956–965CrossRef Kunieda M, Ogura H, Ueda N, Nakamura H (2011) Tensile fracture process of strain hardening cementitious composites by means of three-dimensional meso-scale analysis. Cement Concrete Compos 33:956–965CrossRef
28.
go back to reference Lee SC, Cho JY, Vecchio FJ (2011) Diverse embedment model for steel fiber-reinforced concrete in tension: model verification. ACI Mater J 108:526–535 Lee SC, Cho JY, Vecchio FJ (2011) Diverse embedment model for steel fiber-reinforced concrete in tension: model verification. ACI Mater J 108:526–535
29.
go back to reference Lee SC, Cho JY, Vecchio FJ (2013) Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. ACI Mater J 110:403–412 Lee SC, Cho JY, Vecchio FJ (2013) Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. ACI Mater J 110:403–412
30.
go back to reference Lei Y (2008) Finite element crack closure analysis of a compact tension specimen. Int J Fatigue 30:21–31CrossRef Lei Y (2008) Finite element crack closure analysis of a compact tension specimen. Int J Fatigue 30:21–31CrossRef
31.
32.
go back to reference Lusti H, Gusev A (2004) Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Model Simul Mater Sci Eng 12:107–119CrossRef Lusti H, Gusev A (2004) Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Model Simul Mater Sci Eng 12:107–119CrossRef
33.
go back to reference Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRef Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRef
35.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150MathSciNetCrossRef Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150MathSciNetCrossRef
36.
go back to reference Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013) Modeling of two-phase random composite materials by finite element. Compos Part B Eng 45:1117–1125CrossRef Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013) Modeling of two-phase random composite materials by finite element. Compos Part B Eng 45:1117–1125CrossRef
37.
go back to reference Octávio C, Dias-da-Costa D, Alfaiate J, Júlio E (2016) Modelling the behaviour of steel fibre reinforced concrete using a discrete strong discontinuity approach. Eng Fracture Mech 154:12–23CrossRef Octávio C, Dias-da-Costa D, Alfaiate J, Júlio E (2016) Modelling the behaviour of steel fibre reinforced concrete using a discrete strong discontinuity approach. Eng Fracture Mech 154:12–23CrossRef
42.
go back to reference Park SH, Kim DJ, Ryu GS, Koh KT (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement Concrete Compos 34:172–184CrossRef Park SH, Kim DJ, Ryu GS, Koh KT (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement Concrete Compos 34:172–184CrossRef
45.
go back to reference Pike MG, Oskay C (2015b) XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem Anal Des 106:16–31CrossRef Pike MG, Oskay C (2015b) XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem Anal Des 106:16–31CrossRef
46.
go back to reference Pike MG, Oskay C (2016) Three-dimensional modeling of short fiber-reinforced composites with extended finite-element method. J Eng Mech 142:11–16CrossRef Pike MG, Oskay C (2016) Three-dimensional modeling of short fiber-reinforced composites with extended finite-element method. J Eng Mech 142:11–16CrossRef
49.
go back to reference Ruiz G (2001) Propagation of a cohesive crack crossing a reinforcement layer. Int J Fracture 111:265–282CrossRef Ruiz G (2001) Propagation of a cohesive crack crossing a reinforcement layer. Int J Fracture 111:265–282CrossRef
51.
go back to reference Schauffert EA, Cusatis G (2012) Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech 138(7):834–841CrossRef Schauffert EA, Cusatis G (2012) Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior. J Eng Mech 138(7):834–841CrossRef
53.
go back to reference Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cement Concrete Compos 33:572–585CrossRef Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cement Concrete Compos 33:572–585CrossRef
55.
go back to reference Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193MathSciNetCrossRef Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193MathSciNetCrossRef
56.
go back to reference Tian W, Qi L, Su C, Zhou J, Jing Z (2016) Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: effect of fiber orientation. Compos Struct 152:408–417CrossRef Tian W, Qi L, Su C, Zhou J, Jing Z (2016) Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: effect of fiber orientation. Compos Struct 152:408–417CrossRef
57.
go back to reference Visalvanich K, Naaman AE (1983) Fracture model for fiber reinforced concrete. J Am Concrete Inst 80:128–138 Visalvanich K, Naaman AE (1983) Fracture model for fiber reinforced concrete. J Am Concrete Inst 80:128–138
58.
go back to reference Zhang J, Deng S, Wang Y, Ye L, Zhou L, Zhang Z (2013) Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites. Compos Part A Appl Sci Manuf 55:35–44CrossRef Zhang J, Deng S, Wang Y, Ye L, Zhou L, Zhang Z (2013) Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites. Compos Part A Appl Sci Manuf 55:35–44CrossRef
59.
go back to reference Zhao D, Botsis J (1989) Experimental and numerical studies in model composites part I: experimental results. Int J Fracture 82:153–174CrossRef Zhao D, Botsis J (1989) Experimental and numerical studies in model composites part I: experimental results. Int J Fracture 82:153–174CrossRef
60.
go back to reference Zhao L, Zhi J, Zhang J, Liu Z, Hu N (2016) XFEM simulation of delamination in composite laminates. Compos A 80:61–71CrossRef Zhao L, Zhi J, Zhang J, Liu Z, Hu N (2016) XFEM simulation of delamination in composite laminates. Compos A 80:61–71CrossRef
61.
go back to reference Zienkiewicz O, Owen D, Phillips D, Nayak G (1972) Finite element methods in the analysis of reactor vessels. Nuclear Eng Des 20(2):507–541CrossRef Zienkiewicz O, Owen D, Phillips D, Nayak G (1972) Finite element methods in the analysis of reactor vessels. Nuclear Eng Des 20(2):507–541CrossRef
Metadata
Title
A generalized finite element method for three-dimensional fractures in fiber-reinforced composites
Authors
Phillipe D. Alves
Angelo Simone
C. Armando Duarte
Publication date
30-07-2020
Publisher
Springer Netherlands
Published in
Meccanica / Issue 6/2021
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01211-4

Other articles of this Issue 6/2021

Meccanica 6/2021 Go to the issue

Recent advances in Computational Mechanics and Innovative Materials

Response of cells on a dense array of micro-posts

Recent advances in Computational Mechanics and Innovative Materials

B-bar virtual element method for nearly incompressible and compressible materials

Recent advances in Computational Mechanics and Innovative Materials

Curved creases redistribute global bending stiffness in corrugations: theory and experimentation

Premium Partners