Skip to main content
Top

2023 | OriginalPaper | Chapter

A Geometric Framework to Compare PDEs and Classical Field Theories

Author : Lukas Silvester Barth

Published in: Groups, Invariants, Integrals, and Mathematical Physics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this contribution, a mathematical framework is constructed to relate and compare non-linear partial differential equations (PDEs) in the category of smooth manifolds. In particular, it can be used to compare those aspects of field theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics, relativity theory, classical Yang-Mills theory and so on) that are described by such equations.
Employing a geometric (jet space) approach, a suitable notion of shared structure of two systems of PDEs is identified. It is proven that this shared structure can serve to transfer solutions from one theory to another and a generalization of so-called Bäcklund transformations is derived that can be used to generate non-trivial solutions of some non-linear PDEs.
A procedure (based on formal integrability) is introduced with which one can explicitly compute the minimal consistency conditions that two systems of PDEs need to fulfill in order to share structure under a given correspondence. Furthermore, it is shown how symmetry groups can be used to identify useful correspondences and structure that is shared up to symmetries. Thereby, the role that Bäcklund transformations play in the theory of quotient equations is clarified.
Explicit examples illustrate the general ideas throughout the text and in the last chapter, the framework is applied to systems related to electrodynamics and hydrodynamics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For example, classical mechanics is only valid on certain scales, only produces predictions within acceptable errors up to certain velocities and so on.
 
2
To take into account the validity bounds that go along with an interpretation would require a lot of work, both because those bounds are not always clearly defined and because one might have to add inequalities that restrict the range of the variables.
 
3
Moreover, since formal integrability serves to calculate the minimal integrability conditions, it is the largest possible subsystem given a chosen correspondence.
 
4
A fibered manifold \(\pi :E\; \rightarrow \; M\) is a differentiable manifold E together with a differentiable surjective submersion π called projection.
A surjective submersion is a differentiable surjective map such that its pushforward π is also surjective at each point.
A fiber bundle is a fibered manifold with a local trivialization.
A vector bundle is a fiber bundle in which the fibers are vector spaces and whose transition maps are linear.
 
5
By Borel’s lemma, given any point θ ∈ Jk(E), one can always find a section sE such that jk(sE)(x) = θ. However, given a submanifold O of Jk(E), it is not always possible to find a section \(s:\pi (O)\; \rightarrow \; E\) whose prolongation lies in O.
 
6
Note that this is not the same as \(u^j_{\sigma \alpha }\) because one “double-counts” those coordinates that arise from jets of sections whose derivatives would usually commute.
 
7
Of course the initial and boundary conditions additionally influence the solutions.
 
8
The intuitive reason is that each equation represents a constraint on the space of solutions and therefore the intersection, which is smaller than both original solution spaces, must be described by the union of those constraints.
 
9
To recall the definition of Pl(J), see Eq. (6).
 
10
The condition on gk locally imposes a condition on the dual basis and thus also on the basis.
 
11
Note that (160) can be seen as a derivation of a correspondence Φ :  { v = −2βu1u, v2∕(4β) − v1∕2 = u2u }. which is a Bäcklund correspondence with diff. consequences \(\mathcal {E}_J\) and \(\mathcal {F}_J\), that, in contrast to \(\mathcal {Q}\), does not require the coordinate w anymore.
 
12
The notation \(a_{[\mu _1 \ldots \mu _n]}\) means antisymmetrisation of the indices, e.g. F[νλ,μ] = Fνλ,μ − Fμλ,ν + Fμν,λ − Fλν,μ + Fλμ,ν − Fνμ,λ or gμλA[ν, μ]λ = gμλAν, μλ − gμλAμ, νλ. The Einstein sum convention is used.
 
13
As already mentioned in the footnote above Eq. (170), the notation \(a_{[\mu _1 \ldots \mu _n]}\) means antisymmetrisation of the indices, e.g. F[νλ,μ] = Fνλ,μ − Fμλ,ν + Fμν,λ − Fλν,μ + Fλμ,ν − Fνμ,λ or gμλA[ν, μ]λ = gμλAν, μλ − gμλAμ, νλ. The Einstein sum convention is used.
 
Literature
1.
go back to reference Marmanis, H.: Analogy between the Navier–Stokes equations and Maxwell’s equations: Application to turbulence. Phys. Fluids 10, 1428–1437 (1998)MathSciNetCrossRefMATH Marmanis, H.: Analogy between the Navier–Stokes equations and Maxwell’s equations: Application to turbulence. Phys. Fluids 10, 1428–1437 (1998)MathSciNetCrossRefMATH
4.
go back to reference Steinhauer, J., de Nova, J.R.M.: Self-amplifying Hawking radiation and its background: A numerical study. Phys. Rev. A 95, 033604 (2017)CrossRef Steinhauer, J., de Nova, J.R.M.: Self-amplifying Hawking radiation and its background: A numerical study. Phys. Rev. A 95, 033604 (2017)CrossRef
9.
go back to reference Abraham, R., Marsden, J.: Foundations of Mechanics. AMS Chelsea Pub./American Mathematical Society (2008) Abraham, R., Marsden, J.: Foundations of Mechanics. AMS Chelsea Pub./American Mathematical Society (2008)
10.
go back to reference Román-Roy, N.: Multisymplectic lagrangian and hamiltonian formalisms of classical field theories. Symmetry Integrability Geom. Methods Appl. 5, 100 (2009)MathSciNetMATH Román-Roy, N.: Multisymplectic lagrangian and hamiltonian formalisms of classical field theories. Symmetry Integrability Geom. Methods Appl. 5, 100 (2009)MathSciNetMATH
11.
go back to reference Vinogradov, A.M., Krasilshchik, I.S.: Nonlocal symmetries and the theory of coverings: an addendum to A. M. Vinogradov’s “local symmetries and conservation laws”. Acta Appl. Math. 2, 79–96 (1984) Vinogradov, A.M., Krasilshchik, I.S.: Nonlocal symmetries and the theory of coverings: an addendum to A. M. Vinogradov’s “local symmetries and conservation laws”. Acta Appl. Math. 2, 79–96 (1984)
12.
go back to reference Vinogradov, A.M., Krasil’shchik, I.S.: Nonlocal Trends in the Geometry of Differential Equations: Symmetries, Conservation Laws, and Bäcklund Transformations, pp. 161–209. Springer, Dordrecht (1989) Vinogradov, A.M., Krasil’shchik, I.S.: Nonlocal Trends in the Geometry of Differential Equations: Symmetries, Conservation Laws, and Bäcklund Transformations, pp. 161–209. Springer, Dordrecht (1989)
13.
go back to reference Krasil’shchik, I.S., Vinogradov, A.M., Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Samokhin, A.V., Torkhov, Y.N, Verbovetsky, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. American Mathematical Society, Providence (1999) (Translations of Mathematical Monographs)MATH Krasil’shchik, I.S., Vinogradov, A.M., Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Samokhin, A.V., Torkhov, Y.N, Verbovetsky, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. American Mathematical Society, Providence (1999) (Translations of Mathematical Monographs)MATH
14.
go back to reference Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1996)CrossRef Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1996)CrossRef
15.
go back to reference Stamatescu, I.-O., et al.: Symbol and Physical Knowledge - On the Conceptual Structure of Physics. Springer, Berlin (2013) Stamatescu, I.-O., et al.: Symbol and Physical Knowledge - On the Conceptual Structure of Physics. Springer, Berlin (2013)
16.
go back to reference Hertz, H.: Gesammelte Werke von Heinrich Hertz - Band III - Die Prinzipien der Mechanik. Johann Ambrosius Barth (Arthur Meiner), Druck von Metzger und Wittich, Leipzig (1894) Hertz, H.: Gesammelte Werke von Heinrich Hertz - Band III - Die Prinzipien der Mechanik. Johann Ambrosius Barth (Arthur Meiner), Druck von Metzger und Wittich, Leipzig (1894)
17.
go back to reference Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations. J. Differ. Geom. 1(3–4), 269–307 (1967)MathSciNetMATH Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations. J. Differ. Geom. 1(3–4), 269–307 (1967)MathSciNetMATH
18.
go back to reference Bryant, R.L., Gardner, R.B., Chern, S.S., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications. Springer, New York (1991)CrossRefMATH Bryant, R.L., Gardner, R.B., Chern, S.S., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications. Springer, New York (1991)CrossRefMATH
19.
go back to reference Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics. Springer, Berlin (2009) Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics. Springer, Berlin (2009)
20.
go back to reference Pommaret, J.F.: Partial Differential Equations and Group Theory: New Perspectives for Applications. Mathematics and Its Applications. Springer, Dordrecht (1994) Pommaret, J.F.: Partial Differential Equations and Group Theory: New Perspectives for Applications. Mathematics and Its Applications. Springer, Dordrecht (1994)
21.
22.
go back to reference Vinogradov, A.M.: Cohomological Analysis of Partial Differential Equations and Secondary Calculus. American Mathematical Society, Providence (2001)CrossRefMATH Vinogradov, A.M.: Cohomological Analysis of Partial Differential Equations and Secondary Calculus. American Mathematical Society, Providence (2001)CrossRefMATH
26.
go back to reference Vitagliano, L.: Characteristics, bicharacteristics and geometric singularities of solutions of PDEs. Int. J. Geom. Methods Modern Phys. 11(09), 1460039 (2014)MathSciNetCrossRefMATH Vitagliano, L.: Characteristics, bicharacteristics and geometric singularities of solutions of PDEs. Int. J. Geom. Methods Modern Phys. 11(09), 1460039 (2014)MathSciNetCrossRefMATH
27.
go back to reference Pommaret, J.F.: Partial Differential Control Theory and Causality, pp. 599–605. Birkhäuser, Boston (1991) Pommaret, J.F.: Partial Differential Control Theory and Causality, pp. 599–605. Birkhäuser, Boston (1991)
30.
go back to reference Kogan, I.A., Olver, P.J.: Invariant euler–lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76(2), 137–193 (2003)MathSciNetCrossRefMATH Kogan, I.A., Olver, P.J.: Invariant euler–lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76(2), 137–193 (2003)MathSciNetCrossRefMATH
31.
32.
go back to reference Valiquette, F.: Group foliation of differential equations using moving frames. Forum Math. Sigma 3 (2015) Valiquette, F.: Group foliation of differential equations using moving frames. Forum Math. Sigma 3 (2015)
33.
go back to reference Olver, P.J.: Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1995)MATH Olver, P.J.: Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1995)MATH
34.
go back to reference Kruglikov, B.: Symmetry approaches for reductions of PDEs, differential constraints and Lagrange-Charpit method. Acta Appl. Math. 101(1), 145–161 (2008)MathSciNetCrossRefMATH Kruglikov, B.: Symmetry approaches for reductions of PDEs, differential constraints and Lagrange-Charpit method. Acta Appl. Math. 101(1), 145–161 (2008)MathSciNetCrossRefMATH
37.
go back to reference Kant, U., Seiler, W.M.: Singularities in the geometric theory of differential equations. Conf. Publ. 2011, 784–793 (2011)MathSciNetMATH Kant, U., Seiler, W.M.: Singularities in the geometric theory of differential equations. Conf. Publ. 2011, 784–793 (2011)MathSciNetMATH
38.
go back to reference Tu, L.W.: An Introduction to Manifolds. Universitext. Springer, New York (2010) Tu, L.W.: An Introduction to Manifolds. Universitext. Springer, New York (2010)
39.
go back to reference Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1989)CrossRefMATH Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1989)CrossRefMATH
41.
go back to reference Guillemin, V., Pollack, A.: Differential Topology. AMS Chelsea Publishing Series. Prentice-Hall, Hoboken (2010)MATH Guillemin, V., Pollack, A.: Differential Topology. AMS Chelsea Publishing Series. Prentice-Hall, Hoboken (2010)MATH
42.
44.
go back to reference Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Conference Series/Institute of Mathematics and Its Applica. Academic Press, Cambridge (1982)MATH Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Conference Series/Institute of Mathematics and Its Applica. Academic Press, Cambridge (1982)MATH
46.
go back to reference Reincke-Collon, C.: Entwurf invarianter Folgeregler für Systeme mit Lie-Symmetrien. Logos-Verlag, Berlin (2012) Reincke-Collon, C.: Entwurf invarianter Folgeregler für Systeme mit Lie-Symmetrien. Logos-Verlag, Berlin (2012)
47.
go back to reference Giachetta, G., Mangiarotti, L.: Gauge invariance and formal integrability of the yang-mills-higgs equations. Int. J. Theor. Phys. 35(7), 1405–1422 (1996)MathSciNetCrossRefMATH Giachetta, G., Mangiarotti, L.: Gauge invariance and formal integrability of the yang-mills-higgs equations. Int. J. Theor. Phys. 35(7), 1405–1422 (1996)MathSciNetCrossRefMATH
Metadata
Title
A Geometric Framework to Compare PDEs and Classical Field Theories
Author
Lukas Silvester Barth
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-25666-0_6

Premium Partner