Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 2/2024

29-02-2024 | Original Research Article

A Homogenization Technology for Heavy Ingots: Hot-Top Pulsed Magneto-Oscillation

Authors: Honggang Zhong, Lixin Zhou, Huazhi Yuan, Ke Han, Qingyou Han, Zhishuai Xu, Lijuan Li, Fan Zhang, Jian Huang, Renxing Li, Qijie Zhai

Published in: Metallurgical and Materials Transactions B | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We scaled up a previously developed method, known as Hot-top Pulsed Magneto-Oscillation (HPMO), to minimize crack, shrinkage-cavity, and macrosegregation in large ingots. Simulations on electromagnetic field, flow field, and temperature field revealed that an HPMO-induced electromagnetic field forces circulation of liquid steel near the riser, which causes grain nuclei and free grains to fall off the riser walls, drift away, and settle onto the middle of the mold. This phenomenon, known as “grain showering”, refines solidified structure and reduces segregation. Joule heating generated by the HPMO process leads to mass feeding of the riser, which eliminates the development of pipes or central porosity and cracks. Based on simulation results, we designed a prototype HPMO apparatus and tested it on the production of ingots weighing 18 tonnes. Experimental results indicated that the use of HPMO grain showering did indeed yield expected solidified structure in ingots with a 56–83 pct reduction in equiaxed grain size, a 41 pct reduction in the number of inclusions, and a 50–75 pct reduction in normal carbon segregation comparing with that in controlled ingots. Furthermore, by using HPMO, shrinkage-induced pipes and center cracks that often occurred in the control ingots were eliminated, resulting in a fourfold increase in ductility in critical regions of the ingot. This work demonstrated the value of computation-aided simulation for improving manufacturing methods for the casting of large ingots.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference G. Lesoult: Macrosegregation in steel strands and ingots: Characterisation, formation and consequences. Mater. Sci. Eng. A, 2005, vol. 413–14, pp. 19–29.CrossRef G. Lesoult: Macrosegregation in steel strands and ingots: Characterisation, formation and consequences. Mater. Sci. Eng. A, 2005, vol. 413–14, pp. 19–29.CrossRef
2.
go back to reference M.C. Flemings: Our understanding of macrosegregation: past and present. ISIJ Int., 2000, vol. 40(9), pp. 833–41.CrossRef M.C. Flemings: Our understanding of macrosegregation: past and present. ISIJ Int., 2000, vol. 40(9), pp. 833–41.CrossRef
3.
4.
go back to reference D. Li, X. Chen, P. Fu, X. Ma, H. Liu, Y. Chen, et al.: Inclusion flotation-driven channel segregation in solidifying steels. Nat. Commun., 2014, vol. 5, p. 5572.ADSCrossRefPubMed D. Li, X. Chen, P. Fu, X. Ma, H. Liu, Y. Chen, et al.: Inclusion flotation-driven channel segregation in solidifying steels. Nat. Commun., 2014, vol. 5, p. 5572.ADSCrossRefPubMed
5.
go back to reference D.G. Eskin, Q. Du, and L. Katgerman: Relationship between shrinkage-induced macrosegregation and the sump profile upon direct-chill casting. Scr. Mater., 2006, vol. 55(8), pp. 715–18.CrossRef D.G. Eskin, Q. Du, and L. Katgerman: Relationship between shrinkage-induced macrosegregation and the sump profile upon direct-chill casting. Scr. Mater., 2006, vol. 55(8), pp. 715–18.CrossRef
6.
go back to reference D. Sun, J. Zhang, X. Yang, and K. Mu: Exothermic and insulating riser design of gear ring seat casting based on any casting. J. Phys. Conf. Ser., 2018, vol. 1064(1), p. 12005.CrossRef D. Sun, J. Zhang, X. Yang, and K. Mu: Exothermic and insulating riser design of gear ring seat casting based on any casting. J. Phys. Conf. Ser., 2018, vol. 1064(1), p. 12005.CrossRef
7.
go back to reference O. Yücel, A. Turan, and K.C. Candeğer: Effects of changing size-weight parameters on the temperature dependent exothermic riser sleeve properties. Eurasian Chem. Technol. J., 2018, vol. 20(1), pp. 17–21.CrossRef O. Yücel, A. Turan, and K.C. Candeğer: Effects of changing size-weight parameters on the temperature dependent exothermic riser sleeve properties. Eurasian Chem. Technol. J., 2018, vol. 20(1), pp. 17–21.CrossRef
9.
go back to reference W.T. Tu, H.F. Shen, and B.C. Liu: Modelling of macrosegregation in a 231-ton steel ingot with multi-pouring process. Mater. Res. Innovations, 2015, vol. 19(4), pp. S59-63.ADSCrossRef W.T. Tu, H.F. Shen, and B.C. Liu: Modelling of macrosegregation in a 231-ton steel ingot with multi-pouring process. Mater. Res. Innovations, 2015, vol. 19(4), pp. S59-63.ADSCrossRef
10.
go back to reference O. Kudryashova, M. Khmeleva, P. Danilov, V. Dammer, A. Vorozhtsov, and D. Eskin: Optimizing the conditions of metal solidification with vibration. Metals., 2019, vol. 9(3), p. 366.CrossRef O. Kudryashova, M. Khmeleva, P. Danilov, V. Dammer, A. Vorozhtsov, and D. Eskin: Optimizing the conditions of metal solidification with vibration. Metals., 2019, vol. 9(3), p. 366.CrossRef
11.
go back to reference V. Promakhov, M. Khmeleva, I. Zhukov, V. Platov, A. Khrustalyov, and A. Vorozhtsov: Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties. Metals., 2019, vol. 9(1), p. 87.CrossRef V. Promakhov, M. Khmeleva, I. Zhukov, V. Platov, A. Khrustalyov, and A. Vorozhtsov: Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties. Metals., 2019, vol. 9(1), p. 87.CrossRef
12.
go back to reference B. Sang, X. Kang, and D. Li: A novel technique for reducing macrosegregation in heavy steel ingots. J. Mater. Process. Technol., 2010, vol. 210(4), pp. 703–11.CrossRef B. Sang, X. Kang, and D. Li: A novel technique for reducing macrosegregation in heavy steel ingots. J. Mater. Process. Technol., 2010, vol. 210(4), pp. 703–11.CrossRef
13.
go back to reference D.M. Gao, Z.J. Li, Q.Y. Han, and Q.J. Zhai: Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A, 2009, vol. 502(1–2), pp. 2–5.CrossRef D.M. Gao, Z.J. Li, Q.Y. Han, and Q.J. Zhai: Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A, 2009, vol. 502(1–2), pp. 2–5.CrossRef
14.
go back to reference X. Jian, H. Xu, T.T. Meek, and Q. Han: Effect of power ultrasound on solidification of aluminum A356 alloy. Matt. Leeter., 2005, vol. 59(2–3), pp. 190–93.CrossRef X. Jian, H. Xu, T.T. Meek, and Q. Han: Effect of power ultrasound on solidification of aluminum A356 alloy. Matt. Leeter., 2005, vol. 59(2–3), pp. 190–93.CrossRef
15.
go back to reference Q.Y. Han: Ultrasonic processing of materials. Metall. Mater. Trans. B, 2015, vol. 46, pp. 1603–14.CrossRef Q.Y. Han: Ultrasonic processing of materials. Metall. Mater. Trans. B, 2015, vol. 46, pp. 1603–14.CrossRef
16.
go back to reference D. Eskin and F. Wang: Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy. Metals., 2019, vol. 9(2), p. 161.CrossRef D. Eskin and F. Wang: Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy. Metals., 2019, vol. 9(2), p. 161.CrossRef
17.
go back to reference Y. Wan, M. Li, L. Chen, Y. Wu, J. Li, H. Pan, and W. Zhong: Effect of final electromagnetic stirring parameters on central cross-sectional carbon concentration distribution of high-carbon square billet. Metals., 2019, vol. 9(6), p. 665.CrossRef Y. Wan, M. Li, L. Chen, Y. Wu, J. Li, H. Pan, and W. Zhong: Effect of final electromagnetic stirring parameters on central cross-sectional carbon concentration distribution of high-carbon square billet. Metals., 2019, vol. 9(6), p. 665.CrossRef
18.
go back to reference Q. Fang, H. Ni, B. Wang, H. Zhang, and F. Ye: Effects of EMS induced flow on solidification and solute transport in bloom mold. Metals., 2017, vol. 7(3), p. 72.CrossRef Q. Fang, H. Ni, B. Wang, H. Zhang, and F. Ye: Effects of EMS induced flow on solidification and solute transport in bloom mold. Metals., 2017, vol. 7(3), p. 72.CrossRef
19.
go back to reference P. Mikolajczak: Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals., 2017, vol. 7(3), p. 89.CrossRef P. Mikolajczak: Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals., 2017, vol. 7(3), p. 89.CrossRef
20.
go back to reference N. Li, L. Zhang, R. Zhang, P. Yin, H. Xing, and H. Wu: Research on grain refinement in hypoeutectic Al-Si Alloy during solidification under an alternating electric current pulse. Metals., 2019, vol. 9(5), p. 571.CrossRef N. Li, L. Zhang, R. Zhang, P. Yin, H. Xing, and H. Wu: Research on grain refinement in hypoeutectic Al-Si Alloy during solidification under an alternating electric current pulse. Metals., 2019, vol. 9(5), p. 571.CrossRef
21.
go back to reference Y. Zhang, C. Ye, Y. Xu, H. Zhong, X. Chen, X. Miao, et al.: Influence of growth velocity on the separation of primary silicon in solidified Al-Si hypereutectic alloy driven by a pulsed electric current. Metals., 2017, vol. 7(6), p. 184.CrossRef Y. Zhang, C. Ye, Y. Xu, H. Zhong, X. Chen, X. Miao, et al.: Influence of growth velocity on the separation of primary silicon in solidified Al-Si hypereutectic alloy driven by a pulsed electric current. Metals., 2017, vol. 7(6), p. 184.CrossRef
22.
go back to reference Y. Zhang, X. Cheng, H. Zhong, Z. Xu, L. Li, Y. Gong, et al.: Comparative study on the grain refinement of Al-Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals., 2016, vol. 6(7), p. 170.CrossRef Y. Zhang, X. Cheng, H. Zhong, Z. Xu, L. Li, Y. Gong, et al.: Comparative study on the grain refinement of Al-Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals., 2016, vol. 6(7), p. 170.CrossRef
23.
go back to reference F. Ren, J. Li, H. Ge, D. Cai, Q. Hu, and J. Li: A comprehensive study of layer casting process by a four-phase filling-solidification model. J Mater Process Tech., 2020, vol. 284, p. 116737.CrossRef F. Ren, J. Li, H. Ge, D. Cai, Q. Hu, and J. Li: A comprehensive study of layer casting process by a four-phase filling-solidification model. J Mater Process Tech., 2020, vol. 284, p. 116737.CrossRef
24.
go back to reference L. Jun, W. Junge, R. Fengli, G. Honghao, H. Qiaodan, X. Mingxu, et al.: Experimental and numerical simulation study on layer casting method for composition homogeneity on ingot casting. Acta Metall. Sin., 2018, vol. 54, p. 118. L. Jun, W. Junge, R. Fengli, G. Honghao, H. Qiaodan, X. Mingxu, et al.: Experimental and numerical simulation study on layer casting method for composition homogeneity on ingot casting. Acta Metall. Sin., 2018, vol. 54, p. 118.
25.
go back to reference Y. Gong, J. Luo, J. Jing, Z. Xia, and Q. Zhai: Structure refinement of pure aluminum by pulse magneto-oscillation. Mater. Sci. Eng. A, 2008, vol. 497(1–2), pp. 147–52.CrossRef Y. Gong, J. Luo, J. Jing, Z. Xia, and Q. Zhai: Structure refinement of pure aluminum by pulse magneto-oscillation. Mater. Sci. Eng. A, 2008, vol. 497(1–2), pp. 147–52.CrossRef
26.
go back to reference J. Zhao, J. Yu, K. Han, H. Zhong, R. Li, and Q. Zhai: Effect of coil configuration design on Al solidified structure refinement. Metals., 2020, vol. 10(1), p. 153.CrossRef J. Zhao, J. Yu, K. Han, H. Zhong, R. Li, and Q. Zhai: Effect of coil configuration design on Al solidified structure refinement. Metals., 2020, vol. 10(1), p. 153.CrossRef
27.
go back to reference H. Li, Z. Liu, R. Li, Y. Gong, Z. Xu, and Q. Zhai: Distribution of nonmetallic inclusions in molten steel under hot-top pulsed magneto-oscillation treatment. J. Iron. Steel Res. Int., 2018, vol. 25(8), pp. 867–76.CrossRef H. Li, Z. Liu, R. Li, Y. Gong, Z. Xu, and Q. Zhai: Distribution of nonmetallic inclusions in molten steel under hot-top pulsed magneto-oscillation treatment. J. Iron. Steel Res. Int., 2018, vol. 25(8), pp. 867–76.CrossRef
28.
go back to reference X. Liao, Q. Zhai, J. Luo, W. Chen, and Y. Gong: Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater., 2008, vol. 55(9), pp. 3103–09.ADSCrossRef X. Liao, Q. Zhai, J. Luo, W. Chen, and Y. Gong: Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater., 2008, vol. 55(9), pp. 3103–09.ADSCrossRef
29.
go back to reference W.D. Bennon and F.P. Incropera: A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I: model formulation. Int. J. Heat Mass Transfer., 1987, vol. 30(10), pp. 2161–70.CrossRef W.D. Bennon and F.P. Incropera: A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I: model formulation. Int. J. Heat Mass Transfer., 1987, vol. 30(10), pp. 2161–70.CrossRef
30.
go back to reference J. Ni and F.P. Incropera: Extension of the continuum model for transport phenomena occurring during metal alloy solidification—II: microscopic considerations. Int. J. Heat Mass Transfer., 1995, vol. 38(7), pp. 1285–96.CrossRef J. Ni and F.P. Incropera: Extension of the continuum model for transport phenomena occurring during metal alloy solidification—II: microscopic considerations. Int. J. Heat Mass Transfer., 1995, vol. 38(7), pp. 1285–96.CrossRef
31.
go back to reference I. Edry, T. Mordechai, N. Frage, and S. Hayun: Effects of treatment duration and cooling rate on pure aluminum solidification upon pulse magneto-oscillation treatment. Metall. Mater. Trans. A, 2016, vol. 47(3), pp. 1261–67.CrossRef I. Edry, T. Mordechai, N. Frage, and S. Hayun: Effects of treatment duration and cooling rate on pure aluminum solidification upon pulse magneto-oscillation treatment. Metall. Mater. Trans. A, 2016, vol. 47(3), pp. 1261–67.CrossRef
32.
go back to reference Q. Han: Dendritic features of the solidification structure in a large AA3004 direct chill (DC) cast ingot. Metall. Mater. Trans. B, 2022, vol. 53(2), pp. 786–97.CrossRef Q. Han: Dendritic features of the solidification structure in a large AA3004 direct chill (DC) cast ingot. Metall. Mater. Trans. B, 2022, vol. 53(2), pp. 786–97.CrossRef
33.
go back to reference Q.Y. Han: The role of solutes in grain refinement of hypoeutectic magnesium and aluminum alloys. JMA., 2022, vol. 10(7), pp. 1846–56. Q.Y. Han: The role of solutes in grain refinement of hypoeutectic magnesium and aluminum alloys. JMA., 2022, vol. 10(7), pp. 1846–56.
34.
go back to reference Y.Y. Xu, J. Zhao, C.Y. Ye, et al.: Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al–Si alloy under the application of pulsed magneto-oscillation. Acta Metall. Sin., 2022, vol. 35, pp. 254–74.CrossRef Y.Y. Xu, J. Zhao, C.Y. Ye, et al.: Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al–Si alloy under the application of pulsed magneto-oscillation. Acta Metall. Sin., 2022, vol. 35, pp. 254–74.CrossRef
35.
go back to reference F. Zhang, H.G. Zhong, Y.Q. Yang, et al.: Improving ingot homogeneity by modified hot-top pulsed magneto-oscillation. J. Iron. Steel Res. Int., 2022, vol. 29(12), pp. 1939–50.CrossRef F. Zhang, H.G. Zhong, Y.Q. Yang, et al.: Improving ingot homogeneity by modified hot-top pulsed magneto-oscillation. J. Iron. Steel Res. Int., 2022, vol. 29(12), pp. 1939–50.CrossRef
Metadata
Title
A Homogenization Technology for Heavy Ingots: Hot-Top Pulsed Magneto-Oscillation
Authors
Honggang Zhong
Lixin Zhou
Huazhi Yuan
Ke Han
Qingyou Han
Zhishuai Xu
Lijuan Li
Fan Zhang
Jian Huang
Renxing Li
Qijie Zhai
Publication date
29-02-2024
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 2/2024
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-024-03019-z

Other articles of this Issue 2/2024

Metallurgical and Materials Transactions B 2/2024 Go to the issue

Premium Partners