Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2009

01-03-2009

A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model

Authors: Bojan Janković, Slavko Mentus

Published in: Metallurgical and Materials Transactions A | Issue 3/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nonisothermal decomposition process of the powder sample of palladium acetylacetonate [Pd(acac)2] was investigated by thermogravimetric (TG) and X-ray diffraction (XRD) techniques. The experimental TG and differential thermogravimetric (DTG) curves were obtained at different heating rates (β = 2 °C min−1, 5 °C min−1, 10 °C min−1, 20 °C min−1, and 30 °C min−1) under a pure nitrogen (N2) atmosphere. The kinetic triplet (A, E a , and model function f(α)) was determined using different kinetic methods. It was found that the apparent activation energy was not really changed and was almost independent with respect to the level of conversion (α). This result suggests that the nonisothermal decomposition process of palladium acetylacetonate follows a single-step reaction. Practically constant E a values approximating 140.1 ± 1.5 kJ mol−1 were found. It was concluded that the reaction model R3, for the integral composite method I, is the model with the best regression and with kinetic parameters that are both unique and very similar to those obtained by the Friedman isoconversional method. In addition, it was found that the results obtained from both the Master-plot and Málek methods confirm the results obtained from the multiple-rate isotemperature method, specifically, that the R3 (contracting volume) reaction mechanism can best describe the investigated decomposition process. By applying the Miura procedure, a distributed reactivity model (DRM) for the investigated decomposition process was established. From the α = α(E a ) dependence, the experimental distribution curve of E a was estimated. Using the nonlinear (NL) least-squares analysis, it was found that the Gaussian distribution model (with distribution parameters: E 0 = 138.4 kJ mol−1 and σ = 0.71 kJ mol−1) represents the best reactivity model for describing the investigated process. Also, it was concluded that the E a values calculated by the Friedman isoconversional method and the estimated distribution curve (f(E a )), are correct, even in the case in which the investigated decomposition process occurs through a single-step reaction mechanism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
 
2
PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.
 
Literature
1.
go back to reference H.D. Kaesz, R.S. William, R.F. Hicks, J.I. Zink, Y. Chen, H.J. Muller, Z. Xue, D. Xu, D.K. Shuh, and Y.K. Kim: New J. Chem., 1990, vol. 14, pp. 527–34 H.D. Kaesz, R.S. William, R.F. Hicks, J.I. Zink, Y. Chen, H.J. Muller, Z. Xue, D. Xu, D.K. Shuh, and Y.K. Kim: New J. Chem., 1990, vol. 14, pp. 527–34
2.
go back to reference R. Ugo, C. Dossi, and R. Psaro: J. Mol. Catal. A, 1996, vol. 107, pp. 13–22CrossRef R. Ugo, C. Dossi, and R. Psaro: J. Mol. Catal. A, 1996, vol. 107, pp. 13–22CrossRef
3.
go back to reference M.A. Aramendía, V. Boráu, I.M. García, C. Jiménez, J.M. Marinas, and F.J. Urbano: Appl. Catal. B, 1999, vol. 20, pp. 101–10CrossRef M.A. Aramendía, V. Boráu, I.M. García, C. Jiménez, J.M. Marinas, and F.J. Urbano: Appl. Catal. B, 1999, vol. 20, pp. 101–10CrossRef
4.
go back to reference W. Daniell, H. Landes, N.E. Fouad, and H. Knözinger: J. Mol. Catal. A, 2002, vol. 178, pp. 211–18CrossRef W. Daniell, H. Landes, N.E. Fouad, and H. Knözinger: J. Mol. Catal. A, 2002, vol. 178, pp. 211–18CrossRef
5.
go back to reference C. Dossi, R. Psaro, A. Bartsch, A. Fusi, L. Sordelli, R. Ugo, M. Bellatreccia, R. Zanoni, and G. Vlaic: J. Catal., 1994, vol. 145, pp. 377–83CrossRef C. Dossi, R. Psaro, A. Bartsch, A. Fusi, L. Sordelli, R. Ugo, M. Bellatreccia, R. Zanoni, and G. Vlaic: J. Catal., 1994, vol. 145, pp. 377–83CrossRef
6.
go back to reference J.A.R. van Veen, G. Jonkers, and W.H. Hesselink: J. Chem. Soc. Faraday Trans I, 1989, vol. 85, pp. 389–413CrossRef J.A.R. van Veen, G. Jonkers, and W.H. Hesselink: J. Chem. Soc. Faraday Trans I, 1989, vol. 85, pp. 389–413CrossRef
7.
go back to reference J.C. Kenvin, M.G. White, and M.B. Mitchell: Langmuir, 1991, vol. 7, pp. 1198–1205CrossRef J.C. Kenvin, M.G. White, and M.B. Mitchell: Langmuir, 1991, vol. 7, pp. 1198–1205CrossRef
8.
go back to reference J.R. van Veen, M.S.P.C. DeJong-Versloot, G.M.M. van Kessel, and F.J. Fels: Thermochim. Acta, 1989, vol. 152, pp. 359–70CrossRef J.R. van Veen, M.S.P.C. DeJong-Versloot, G.M.M. van Kessel, and F.J. Fels: Thermochim. Acta, 1989, vol. 152, pp. 359–70CrossRef
9.
go back to reference C. Dossi, R. Psaro, A. Bartsch, E. Brivio, A. Galasco, and P. Losi: Catal. Today, 1993, vol. 17, pp. 527–35CrossRef C. Dossi, R. Psaro, A. Bartsch, E. Brivio, A. Galasco, and P. Losi: Catal. Today, 1993, vol. 17, pp. 527–35CrossRef
10.
go back to reference C. Dossi, A. Fusi, and R. Psaro, G.M. Zanderighi: Appl. Catal., 1989, vol. 46, pp. 145–51CrossRef C. Dossi, A. Fusi, and R. Psaro, G.M. Zanderighi: Appl. Catal., 1989, vol. 46, pp. 145–51CrossRef
11.
go back to reference C.M. Tsang, S.M. Augustine, J.B. Butt, and W.M.H. Sachtler: Appl. Catal., 1989, vol. 46, pp. 45–56CrossRef C.M. Tsang, S.M. Augustine, J.B. Butt, and W.M.H. Sachtler: Appl. Catal., 1989, vol. 46, pp. 45–56CrossRef
12.
go back to reference C. Dossi, A. Fusi, R. Psaro, and D. Roberto: Thermochim. Acta, 1991, vol. 182, pp. 273–80CrossRef C. Dossi, A. Fusi, R. Psaro, and D. Roberto: Thermochim. Acta, 1991, vol. 182, pp. 273–80CrossRef
13.
go back to reference W. Wendlandt: Thermal Methods of Analysis, 3rd ed., Wiley, New York, NY, 1986, pp. 23–25 W. Wendlandt: Thermal Methods of Analysis, 3rd ed., Wiley, New York, NY, 1986, pp. 23–25
14.
go back to reference G.A. Razuvaev, B.G. Gribov, G.A. Domrachev, and B.A. Solomatin: Metalloorganicheskie Soedineniya v Electronike, Nauka, Moscow, 1972, pp. 16–20 G.A. Razuvaev, B.G. Gribov, G.A. Domrachev, and B.A. Solomatin: Metalloorganicheskie Soedineniya v Electronike, Nauka, Moscow, 1972, pp. 16–20
15.
go back to reference P.H. Nguyen: Eur. Appl., 1989, vol. 266, pp. 877–80 P.H. Nguyen: Eur. Appl., 1989, vol. 266, pp. 877–80
16.
go back to reference J.-C. Hierso, R. Feurer, and P. Kalck: Coord. Chem. Rev., 1998, vols. 178–180, pp. 1811–34CrossRef J.-C. Hierso, R. Feurer, and P. Kalck: Coord. Chem. Rev., 1998, vols. 178–180, pp. 1811–34CrossRef
17.
go back to reference V.S. Khandkarova: Cobalt , Nickel, Platinum Metals, Nauka, Moscow, 1978, pp. 39–40 V.S. Khandkarova: Cobalt , Nickel, Platinum Metals, Nauka, Moscow, 1978, pp. 39–40
18.
go back to reference P.M. Maitlis: The Organic Chemistry of Palladium, Academic Press, New York, NY, 1971, pp. 17–19 P.M. Maitlis: The Organic Chemistry of Palladium, Academic Press, New York, NY, 1971, pp. 17–19
19.
go back to reference I. Matsuura, Y. Hashimoto, O. Takayasu, K. Nitta, and Y. Yoshida: Appl. Catal., 1991, vol. 74, pp. 273–80 I. Matsuura, Y. Hashimoto, O. Takayasu, K. Nitta, and Y. Yoshida: Appl. Catal., 1991, vol. 74, pp. 273–80
20.
go back to reference V. Cominos, and A. Gavriilidis: Appl. Catal. A, 2001, vol. 210, pp. 381–90CrossRef V. Cominos, and A. Gavriilidis: Appl. Catal. A, 2001, vol. 210, pp. 381–90CrossRef
21.
22.
23.
go back to reference V.M. Paasonen, P.P. Semyannikov, and A.S. Nazarov: Chem. Sust. Dev., 2002, vol. 10, pp. 751–56 V.M. Paasonen, P.P. Semyannikov, and A.S. Nazarov: Chem. Sust. Dev., 2002, vol. 10, pp. 751–56
24.
go back to reference M. Lashdaf, T. Hatanpää, and M. Tiitta: J. Therm. Anal. Calorim., 2001, vol. 64, 1171–82CrossRef M. Lashdaf, T. Hatanpää, and M. Tiitta: J. Therm. Anal. Calorim., 2001, vol. 64, 1171–82CrossRef
25.
go back to reference L. Liqing, and C. Donghua: J. Therm. Anal. Calorim., 2004, vol. 78, pp. 283–93CrossRef L. Liqing, and C. Donghua: J. Therm. Anal. Calorim., 2004, vol. 78, pp. 283–93CrossRef
26.
27.
go back to reference J.A. Augis, and J.E. Bennett: J. Therm. Anal. Calorim., 1978, vol. 13, pp. 283–92CrossRef J.A. Augis, and J.E. Bennett: J. Therm. Anal. Calorim., 1978, vol. 13, pp. 283–92CrossRef
28.
go back to reference F.J. Gotor, J.M. Criado, J. Málek, and M. Koga: J. Phys. Chem. A, 2000, vol. 104, pp. 10777–10782CrossRef F.J. Gotor, J.M. Criado, J. Málek, and M. Koga: J. Phys. Chem. A, 2000, vol. 104, pp. 10777–10782CrossRef
29.
go back to reference H. Friedman: J. Polym. Sci. C, 1964, vol. 6, pp. 183–87 H. Friedman: J. Polym. Sci. C, 1964, vol. 6, pp. 183–87
30.
go back to reference P. Budrugeac, and E. Segal: J. Therm. Anal. Calorim., 2005, vol. 82, pp. 677–80CrossRef P. Budrugeac, and E. Segal: J. Therm. Anal. Calorim., 2005, vol. 82, pp. 677–80CrossRef
32.
go back to reference J.M. Criado, L.A. Pérez-Maqueda, F.J. Gotor, J. Málek, and N. Koga: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 901–06CrossRef J.M. Criado, L.A. Pérez-Maqueda, F.J. Gotor, J. Málek, and N. Koga: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 901–06CrossRef
37.
38.
go back to reference S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, and S. Kawaguchi: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1085–95CrossRef S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, and S. Kawaguchi: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1085–95CrossRef
39.
go back to reference R.Z. Hu, and Q.Z. Shi: Thermal Analysis Kinetics, Science Press, Beijing, 2001, pp. 20–21 R.Z. Hu, and Q.Z. Shi: Thermal Analysis Kinetics, Science Press, Beijing, 2001, pp. 20–21
41.
go back to reference S. Vyazovkin, and C.A. Wight: Thermochim. Acta, 1999, vols. 340–341, pp. 53–68CrossRef S. Vyazovkin, and C.A. Wight: Thermochim. Acta, 1999, vols. 340–341, pp. 53–68CrossRef
43.
go back to reference G.I. Senum, and R.T. Yang: J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–47CrossRef G.I. Senum, and R.T. Yang: J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–47CrossRef
45.
46.
go back to reference J.H. Campbell, G. Gallegos, and M. Gregg: Fuel, 1980, vol. 59, pp. 727–32CrossRef J.H. Campbell, G. Gallegos, and M. Gregg: Fuel, 1980, vol. 59, pp. 727–32CrossRef
47.
go back to reference C.H. Yun, W.J. Kim, and S.C. Yi: J. Ind. Eng. Chem., 2008, vol. 14, pp. 120–30CrossRef C.H. Yun, W.J. Kim, and S.C. Yi: J. Ind. Eng. Chem., 2008, vol. 14, pp. 120–30CrossRef
48.
49.
go back to reference B.P. Boudreau, and B.R. Ruddick: Am. J. Sci., 1991, vol. 291, pp. 507–38 B.P. Boudreau, and B.R. Ruddick: Am. J. Sci., 1991, vol. 291, pp. 507–38
53.
go back to reference P. Ungerer: in Thermal Phenomena in Sedimentary Basins, B. Durand, ed., Technip, Paris, 1986, pp. 235–36 P. Ungerer: in Thermal Phenomena in Sedimentary Basins, B. Durand, ed., Technip, Paris, 1986, pp. 235–36
54.
go back to reference A.K. Burnham, R.L. Braun, H.R. Gregg, and A.M. Samoun: Energy Fuels, 1987, vol. 1, pp. 452–58CrossRef A.K. Burnham, R.L. Braun, H.R. Gregg, and A.M. Samoun: Energy Fuels, 1987, vol. 1, pp. 452–58CrossRef
55.
go back to reference G.I. Zharkova, P.A. Stabnikov, S.A. Sysoev, and I.K. Igumenov: J. Struct. Chem., 2005, vol. 46, pp. 320–27CrossRef G.I. Zharkova, P.A. Stabnikov, S.A. Sysoev, and I.K. Igumenov: J. Struct. Chem., 2005, vol. 46, pp. 320–27CrossRef
56.
go back to reference L. Guang, G. Weigui, L. Weipeng, P. Shaoping, Y. Gexin, and H. Ying: Xiyou Jinshu Cailiao Yu Gongcheng (Rare Met. Mater. Eng.), 2006, vol. 35, pp. 150–55 L. Guang, G. Weigui, L. Weipeng, P. Shaoping, Y. Gexin, and H. Ying: Xiyou Jinshu Cailiao Yu Gongcheng (Rare Met. Mater. Eng.), 2006, vol. 35, pp. 150–55
57.
58.
go back to reference S. Vyazovkin, and C.A. Wight: Int. Rev. Phys. Chem., 1998, vol. 17, pp. 407–33CrossRef S. Vyazovkin, and C.A. Wight: Int. Rev. Phys. Chem., 1998, vol. 17, pp. 407–33CrossRef
59.
go back to reference J. Opfermann, and H.J. Flammersheim: Thermochim. Acta, 2003, vol. 397, pp. 1–3CrossRef J. Opfermann, and H.J. Flammersheim: Thermochim. Acta, 2003, vol. 397, pp. 1–3CrossRef
60.
61.
go back to reference N. Koga, and J.M. Criado: J. Therm. Anal. Calorim., 1997, vol. 49, pp. 1477–84CrossRef N. Koga, and J.M. Criado: J. Therm. Anal. Calorim., 1997, vol. 49, pp. 1477–84CrossRef
62.
go back to reference B. Delmon: Introduction a la Cinétique Hétérogéne, Technip, Paris, 1969, pp. 53–55 B. Delmon: Introduction a la Cinétique Hétérogéne, Technip, Paris, 1969, pp. 53–55
63.
go back to reference P.P. Semyannikov, V.M. Grankin, I.K. Igumenov, and A.F. Bykov: J. Phys., 1995, vol. 4, pp. 205–11 P.P. Semyannikov, V.M. Grankin, I.K. Igumenov, and A.F. Bykov: J. Phys., 1995, vol. 4, pp. 205–11
64.
go back to reference A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman: J. Nanopart. Res., 2001, vol. 3, pp. 385–400CrossRef A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman: J. Nanopart. Res., 2001, vol. 3, pp. 385–400CrossRef
65.
go back to reference A.G. Nasibulin, I.S. Altman, and E.I. Kauppinen: Chem. Phys. Lett., 2003, vol. 367, pp. 771–77CrossRefADS A.G. Nasibulin, I.S. Altman, and E.I. Kauppinen: Chem. Phys. Lett., 2003, vol. 367, pp. 771–77CrossRefADS
66.
go back to reference E. Kenezaki, S. Tanaka, K. Murai, T. Moriga, J. Motonaka, M. Katoh, and I. Nakabayashi: Anal. Sci., 2004, vol. 20, pp. 1069–75CrossRef E. Kenezaki, S. Tanaka, K. Murai, T. Moriga, J. Motonaka, M. Katoh, and I. Nakabayashi: Anal. Sci., 2004, vol. 20, pp. 1069–75CrossRef
67.
go back to reference N. Ren, A.-G. Dong, W.-B. Cai, Y.-H. Zhang, W.-L. Yang, S.-J. Huo, Y. Chen, S.-H. Xie, Z. Gao, and Y. Tang: J. Mater. Chem., 2004, vol. 14, pp. 3548–52CrossRef N. Ren, A.-G. Dong, W.-B. Cai, Y.-H. Zhang, W.-L. Yang, S.-J. Huo, Y. Chen, S.-H. Xie, Z. Gao, and Y. Tang: J. Mater. Chem., 2004, vol. 14, pp. 3548–52CrossRef
Metadata
Title
A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model
Authors
Bojan Janković
Slavko Mentus
Publication date
01-03-2009
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2009
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-008-9754-4

Other articles of this Issue 3/2009

Metallurgical and Materials Transactions A 3/2009 Go to the issue

Premium Partners