Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2009

01.03.2009

A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model

verfasst von: Bojan Janković, Slavko Mentus

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The nonisothermal decomposition process of the powder sample of palladium acetylacetonate [Pd(acac)2] was investigated by thermogravimetric (TG) and X-ray diffraction (XRD) techniques. The experimental TG and differential thermogravimetric (DTG) curves were obtained at different heating rates (β = 2 °C min−1, 5 °C min−1, 10 °C min−1, 20 °C min−1, and 30 °C min−1) under a pure nitrogen (N2) atmosphere. The kinetic triplet (A, E a , and model function f(α)) was determined using different kinetic methods. It was found that the apparent activation energy was not really changed and was almost independent with respect to the level of conversion (α). This result suggests that the nonisothermal decomposition process of palladium acetylacetonate follows a single-step reaction. Practically constant E a values approximating 140.1 ± 1.5 kJ mol−1 were found. It was concluded that the reaction model R3, for the integral composite method I, is the model with the best regression and with kinetic parameters that are both unique and very similar to those obtained by the Friedman isoconversional method. In addition, it was found that the results obtained from both the Master-plot and Málek methods confirm the results obtained from the multiple-rate isotemperature method, specifically, that the R3 (contracting volume) reaction mechanism can best describe the investigated decomposition process. By applying the Miura procedure, a distributed reactivity model (DRM) for the investigated decomposition process was established. From the α = α(E a ) dependence, the experimental distribution curve of E a was estimated. Using the nonlinear (NL) least-squares analysis, it was found that the Gaussian distribution model (with distribution parameters: E 0 = 138.4 kJ mol−1 and σ = 0.71 kJ mol−1) represents the best reactivity model for describing the investigated process. Also, it was concluded that the E a values calculated by the Friedman isoconversional method and the estimated distribution curve (f(E a )), are correct, even in the case in which the investigated decomposition process occurs through a single-step reaction mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
 
2
PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.
 
Literatur
1.
Zurück zum Zitat H.D. Kaesz, R.S. William, R.F. Hicks, J.I. Zink, Y. Chen, H.J. Muller, Z. Xue, D. Xu, D.K. Shuh, and Y.K. Kim: New J. Chem., 1990, vol. 14, pp. 527–34 H.D. Kaesz, R.S. William, R.F. Hicks, J.I. Zink, Y. Chen, H.J. Muller, Z. Xue, D. Xu, D.K. Shuh, and Y.K. Kim: New J. Chem., 1990, vol. 14, pp. 527–34
2.
Zurück zum Zitat R. Ugo, C. Dossi, and R. Psaro: J. Mol. Catal. A, 1996, vol. 107, pp. 13–22CrossRef R. Ugo, C. Dossi, and R. Psaro: J. Mol. Catal. A, 1996, vol. 107, pp. 13–22CrossRef
3.
Zurück zum Zitat M.A. Aramendía, V. Boráu, I.M. García, C. Jiménez, J.M. Marinas, and F.J. Urbano: Appl. Catal. B, 1999, vol. 20, pp. 101–10CrossRef M.A. Aramendía, V. Boráu, I.M. García, C. Jiménez, J.M. Marinas, and F.J. Urbano: Appl. Catal. B, 1999, vol. 20, pp. 101–10CrossRef
4.
Zurück zum Zitat W. Daniell, H. Landes, N.E. Fouad, and H. Knözinger: J. Mol. Catal. A, 2002, vol. 178, pp. 211–18CrossRef W. Daniell, H. Landes, N.E. Fouad, and H. Knözinger: J. Mol. Catal. A, 2002, vol. 178, pp. 211–18CrossRef
5.
Zurück zum Zitat C. Dossi, R. Psaro, A. Bartsch, A. Fusi, L. Sordelli, R. Ugo, M. Bellatreccia, R. Zanoni, and G. Vlaic: J. Catal., 1994, vol. 145, pp. 377–83CrossRef C. Dossi, R. Psaro, A. Bartsch, A. Fusi, L. Sordelli, R. Ugo, M. Bellatreccia, R. Zanoni, and G. Vlaic: J. Catal., 1994, vol. 145, pp. 377–83CrossRef
6.
Zurück zum Zitat J.A.R. van Veen, G. Jonkers, and W.H. Hesselink: J. Chem. Soc. Faraday Trans I, 1989, vol. 85, pp. 389–413CrossRef J.A.R. van Veen, G. Jonkers, and W.H. Hesselink: J. Chem. Soc. Faraday Trans I, 1989, vol. 85, pp. 389–413CrossRef
7.
Zurück zum Zitat J.C. Kenvin, M.G. White, and M.B. Mitchell: Langmuir, 1991, vol. 7, pp. 1198–1205CrossRef J.C. Kenvin, M.G. White, and M.B. Mitchell: Langmuir, 1991, vol. 7, pp. 1198–1205CrossRef
8.
Zurück zum Zitat J.R. van Veen, M.S.P.C. DeJong-Versloot, G.M.M. van Kessel, and F.J. Fels: Thermochim. Acta, 1989, vol. 152, pp. 359–70CrossRef J.R. van Veen, M.S.P.C. DeJong-Versloot, G.M.M. van Kessel, and F.J. Fels: Thermochim. Acta, 1989, vol. 152, pp. 359–70CrossRef
9.
Zurück zum Zitat C. Dossi, R. Psaro, A. Bartsch, E. Brivio, A. Galasco, and P. Losi: Catal. Today, 1993, vol. 17, pp. 527–35CrossRef C. Dossi, R. Psaro, A. Bartsch, E. Brivio, A. Galasco, and P. Losi: Catal. Today, 1993, vol. 17, pp. 527–35CrossRef
10.
Zurück zum Zitat C. Dossi, A. Fusi, and R. Psaro, G.M. Zanderighi: Appl. Catal., 1989, vol. 46, pp. 145–51CrossRef C. Dossi, A. Fusi, and R. Psaro, G.M. Zanderighi: Appl. Catal., 1989, vol. 46, pp. 145–51CrossRef
11.
Zurück zum Zitat C.M. Tsang, S.M. Augustine, J.B. Butt, and W.M.H. Sachtler: Appl. Catal., 1989, vol. 46, pp. 45–56CrossRef C.M. Tsang, S.M. Augustine, J.B. Butt, and W.M.H. Sachtler: Appl. Catal., 1989, vol. 46, pp. 45–56CrossRef
12.
Zurück zum Zitat C. Dossi, A. Fusi, R. Psaro, and D. Roberto: Thermochim. Acta, 1991, vol. 182, pp. 273–80CrossRef C. Dossi, A. Fusi, R. Psaro, and D. Roberto: Thermochim. Acta, 1991, vol. 182, pp. 273–80CrossRef
13.
Zurück zum Zitat W. Wendlandt: Thermal Methods of Analysis, 3rd ed., Wiley, New York, NY, 1986, pp. 23–25 W. Wendlandt: Thermal Methods of Analysis, 3rd ed., Wiley, New York, NY, 1986, pp. 23–25
14.
Zurück zum Zitat G.A. Razuvaev, B.G. Gribov, G.A. Domrachev, and B.A. Solomatin: Metalloorganicheskie Soedineniya v Electronike, Nauka, Moscow, 1972, pp. 16–20 G.A. Razuvaev, B.G. Gribov, G.A. Domrachev, and B.A. Solomatin: Metalloorganicheskie Soedineniya v Electronike, Nauka, Moscow, 1972, pp. 16–20
15.
Zurück zum Zitat P.H. Nguyen: Eur. Appl., 1989, vol. 266, pp. 877–80 P.H. Nguyen: Eur. Appl., 1989, vol. 266, pp. 877–80
16.
Zurück zum Zitat J.-C. Hierso, R. Feurer, and P. Kalck: Coord. Chem. Rev., 1998, vols. 178–180, pp. 1811–34CrossRef J.-C. Hierso, R. Feurer, and P. Kalck: Coord. Chem. Rev., 1998, vols. 178–180, pp. 1811–34CrossRef
17.
Zurück zum Zitat V.S. Khandkarova: Cobalt , Nickel, Platinum Metals, Nauka, Moscow, 1978, pp. 39–40 V.S. Khandkarova: Cobalt , Nickel, Platinum Metals, Nauka, Moscow, 1978, pp. 39–40
18.
Zurück zum Zitat P.M. Maitlis: The Organic Chemistry of Palladium, Academic Press, New York, NY, 1971, pp. 17–19 P.M. Maitlis: The Organic Chemistry of Palladium, Academic Press, New York, NY, 1971, pp. 17–19
19.
Zurück zum Zitat I. Matsuura, Y. Hashimoto, O. Takayasu, K. Nitta, and Y. Yoshida: Appl. Catal., 1991, vol. 74, pp. 273–80 I. Matsuura, Y. Hashimoto, O. Takayasu, K. Nitta, and Y. Yoshida: Appl. Catal., 1991, vol. 74, pp. 273–80
20.
Zurück zum Zitat V. Cominos, and A. Gavriilidis: Appl. Catal. A, 2001, vol. 210, pp. 381–90CrossRef V. Cominos, and A. Gavriilidis: Appl. Catal. A, 2001, vol. 210, pp. 381–90CrossRef
21.
22.
23.
Zurück zum Zitat V.M. Paasonen, P.P. Semyannikov, and A.S. Nazarov: Chem. Sust. Dev., 2002, vol. 10, pp. 751–56 V.M. Paasonen, P.P. Semyannikov, and A.S. Nazarov: Chem. Sust. Dev., 2002, vol. 10, pp. 751–56
24.
Zurück zum Zitat M. Lashdaf, T. Hatanpää, and M. Tiitta: J. Therm. Anal. Calorim., 2001, vol. 64, 1171–82CrossRef M. Lashdaf, T. Hatanpää, and M. Tiitta: J. Therm. Anal. Calorim., 2001, vol. 64, 1171–82CrossRef
25.
Zurück zum Zitat L. Liqing, and C. Donghua: J. Therm. Anal. Calorim., 2004, vol. 78, pp. 283–93CrossRef L. Liqing, and C. Donghua: J. Therm. Anal. Calorim., 2004, vol. 78, pp. 283–93CrossRef
26.
27.
Zurück zum Zitat J.A. Augis, and J.E. Bennett: J. Therm. Anal. Calorim., 1978, vol. 13, pp. 283–92CrossRef J.A. Augis, and J.E. Bennett: J. Therm. Anal. Calorim., 1978, vol. 13, pp. 283–92CrossRef
28.
Zurück zum Zitat F.J. Gotor, J.M. Criado, J. Málek, and M. Koga: J. Phys. Chem. A, 2000, vol. 104, pp. 10777–10782CrossRef F.J. Gotor, J.M. Criado, J. Málek, and M. Koga: J. Phys. Chem. A, 2000, vol. 104, pp. 10777–10782CrossRef
29.
Zurück zum Zitat H. Friedman: J. Polym. Sci. C, 1964, vol. 6, pp. 183–87 H. Friedman: J. Polym. Sci. C, 1964, vol. 6, pp. 183–87
30.
Zurück zum Zitat P. Budrugeac, and E. Segal: J. Therm. Anal. Calorim., 2005, vol. 82, pp. 677–80CrossRef P. Budrugeac, and E. Segal: J. Therm. Anal. Calorim., 2005, vol. 82, pp. 677–80CrossRef
31.
32.
Zurück zum Zitat J.M. Criado, L.A. Pérez-Maqueda, F.J. Gotor, J. Málek, and N. Koga: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 901–06CrossRef J.M. Criado, L.A. Pérez-Maqueda, F.J. Gotor, J. Málek, and N. Koga: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 901–06CrossRef
33.
34.
35.
37.
38.
Zurück zum Zitat S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, and S. Kawaguchi: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1085–95CrossRef S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, and S. Kawaguchi: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1085–95CrossRef
39.
Zurück zum Zitat R.Z. Hu, and Q.Z. Shi: Thermal Analysis Kinetics, Science Press, Beijing, 2001, pp. 20–21 R.Z. Hu, and Q.Z. Shi: Thermal Analysis Kinetics, Science Press, Beijing, 2001, pp. 20–21
40.
41.
Zurück zum Zitat S. Vyazovkin, and C.A. Wight: Thermochim. Acta, 1999, vols. 340–341, pp. 53–68CrossRef S. Vyazovkin, and C.A. Wight: Thermochim. Acta, 1999, vols. 340–341, pp. 53–68CrossRef
43.
Zurück zum Zitat G.I. Senum, and R.T. Yang: J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–47CrossRef G.I. Senum, and R.T. Yang: J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–47CrossRef
45.
Zurück zum Zitat R.L. Braun, and A.K. Burnham: Energy Fuels, 1987, vol. 1, pp. 153–61CrossRef R.L. Braun, and A.K. Burnham: Energy Fuels, 1987, vol. 1, pp. 153–61CrossRef
46.
Zurück zum Zitat J.H. Campbell, G. Gallegos, and M. Gregg: Fuel, 1980, vol. 59, pp. 727–32CrossRef J.H. Campbell, G. Gallegos, and M. Gregg: Fuel, 1980, vol. 59, pp. 727–32CrossRef
47.
Zurück zum Zitat C.H. Yun, W.J. Kim, and S.C. Yi: J. Ind. Eng. Chem., 2008, vol. 14, pp. 120–30CrossRef C.H. Yun, W.J. Kim, and S.C. Yi: J. Ind. Eng. Chem., 2008, vol. 14, pp. 120–30CrossRef
48.
Zurück zum Zitat C.C. Lakshmanan, and N. White: Energy Fuels, 1994, vol. 8, pp. 1158–67CrossRef C.C. Lakshmanan, and N. White: Energy Fuels, 1994, vol. 8, pp. 1158–67CrossRef
49.
Zurück zum Zitat B.P. Boudreau, and B.R. Ruddick: Am. J. Sci., 1991, vol. 291, pp. 507–38 B.P. Boudreau, and B.R. Ruddick: Am. J. Sci., 1991, vol. 291, pp. 507–38
50.
53.
Zurück zum Zitat P. Ungerer: in Thermal Phenomena in Sedimentary Basins, B. Durand, ed., Technip, Paris, 1986, pp. 235–36 P. Ungerer: in Thermal Phenomena in Sedimentary Basins, B. Durand, ed., Technip, Paris, 1986, pp. 235–36
54.
Zurück zum Zitat A.K. Burnham, R.L. Braun, H.R. Gregg, and A.M. Samoun: Energy Fuels, 1987, vol. 1, pp. 452–58CrossRef A.K. Burnham, R.L. Braun, H.R. Gregg, and A.M. Samoun: Energy Fuels, 1987, vol. 1, pp. 452–58CrossRef
55.
Zurück zum Zitat G.I. Zharkova, P.A. Stabnikov, S.A. Sysoev, and I.K. Igumenov: J. Struct. Chem., 2005, vol. 46, pp. 320–27CrossRef G.I. Zharkova, P.A. Stabnikov, S.A. Sysoev, and I.K. Igumenov: J. Struct. Chem., 2005, vol. 46, pp. 320–27CrossRef
56.
Zurück zum Zitat L. Guang, G. Weigui, L. Weipeng, P. Shaoping, Y. Gexin, and H. Ying: Xiyou Jinshu Cailiao Yu Gongcheng (Rare Met. Mater. Eng.), 2006, vol. 35, pp. 150–55 L. Guang, G. Weigui, L. Weipeng, P. Shaoping, Y. Gexin, and H. Ying: Xiyou Jinshu Cailiao Yu Gongcheng (Rare Met. Mater. Eng.), 2006, vol. 35, pp. 150–55
57.
Zurück zum Zitat Y.F. Lee, and D. Dollimore: Thermochim. Acta, 1998, vol. 323, pp. 75–81CrossRef Y.F. Lee, and D. Dollimore: Thermochim. Acta, 1998, vol. 323, pp. 75–81CrossRef
58.
Zurück zum Zitat S. Vyazovkin, and C.A. Wight: Int. Rev. Phys. Chem., 1998, vol. 17, pp. 407–33CrossRef S. Vyazovkin, and C.A. Wight: Int. Rev. Phys. Chem., 1998, vol. 17, pp. 407–33CrossRef
59.
Zurück zum Zitat J. Opfermann, and H.J. Flammersheim: Thermochim. Acta, 2003, vol. 397, pp. 1–3CrossRef J. Opfermann, and H.J. Flammersheim: Thermochim. Acta, 2003, vol. 397, pp. 1–3CrossRef
60.
Zurück zum Zitat N. Koga, and J.M. Criado: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2901–09CrossRef N. Koga, and J.M. Criado: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2901–09CrossRef
61.
Zurück zum Zitat N. Koga, and J.M. Criado: J. Therm. Anal. Calorim., 1997, vol. 49, pp. 1477–84CrossRef N. Koga, and J.M. Criado: J. Therm. Anal. Calorim., 1997, vol. 49, pp. 1477–84CrossRef
62.
Zurück zum Zitat B. Delmon: Introduction a la Cinétique Hétérogéne, Technip, Paris, 1969, pp. 53–55 B. Delmon: Introduction a la Cinétique Hétérogéne, Technip, Paris, 1969, pp. 53–55
63.
Zurück zum Zitat P.P. Semyannikov, V.M. Grankin, I.K. Igumenov, and A.F. Bykov: J. Phys., 1995, vol. 4, pp. 205–11 P.P. Semyannikov, V.M. Grankin, I.K. Igumenov, and A.F. Bykov: J. Phys., 1995, vol. 4, pp. 205–11
64.
Zurück zum Zitat A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman: J. Nanopart. Res., 2001, vol. 3, pp. 385–400CrossRef A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman: J. Nanopart. Res., 2001, vol. 3, pp. 385–400CrossRef
65.
Zurück zum Zitat A.G. Nasibulin, I.S. Altman, and E.I. Kauppinen: Chem. Phys. Lett., 2003, vol. 367, pp. 771–77CrossRefADS A.G. Nasibulin, I.S. Altman, and E.I. Kauppinen: Chem. Phys. Lett., 2003, vol. 367, pp. 771–77CrossRefADS
66.
Zurück zum Zitat E. Kenezaki, S. Tanaka, K. Murai, T. Moriga, J. Motonaka, M. Katoh, and I. Nakabayashi: Anal. Sci., 2004, vol. 20, pp. 1069–75CrossRef E. Kenezaki, S. Tanaka, K. Murai, T. Moriga, J. Motonaka, M. Katoh, and I. Nakabayashi: Anal. Sci., 2004, vol. 20, pp. 1069–75CrossRef
67.
Zurück zum Zitat N. Ren, A.-G. Dong, W.-B. Cai, Y.-H. Zhang, W.-L. Yang, S.-J. Huo, Y. Chen, S.-H. Xie, Z. Gao, and Y. Tang: J. Mater. Chem., 2004, vol. 14, pp. 3548–52CrossRef N. Ren, A.-G. Dong, W.-B. Cai, Y.-H. Zhang, W.-L. Yang, S.-J. Huo, Y. Chen, S.-H. Xie, Z. Gao, and Y. Tang: J. Mater. Chem., 2004, vol. 14, pp. 3548–52CrossRef
Metadaten
Titel
A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model
verfasst von
Bojan Janković
Slavko Mentus
Publikationsdatum
01.03.2009
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2009
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-008-9754-4

Weitere Artikel der Ausgabe 3/2009

Metallurgical and Materials Transactions A 3/2009 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.