Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2016

10-06-2016

A Limiting Current Oxygen Sensor Based on LSGM as a Solid Electrolyte and LSGMN (N = Fe, Co) as a Dense Diffusion Barrier

Authors: Tao Liu, Xiang Gao, Bei-Gang He, Jing-Kun Yu

Published in: Journal of Materials Engineering and Performance | Issue 7/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The La0.8Sr0.2(Ga1−x Co x )0.8Mg0.2O3−δ (LSGMC x = 0.05, 0.1, 0.15, 0.2, 0.25) and La0.8Sr0.2(Ga1−x Fe x )0.8Mg0.2O3−δ (LSGMF x = 0.1, 0.2, 0.3) samples were prepared by solid-state reaction. The structure, conductivity, thermal expansion behavior, and chemical compatibility were studied by XRD, dilatometry, and four-terminal method. A limiting current oxygen sensor was prepared with La0.8Sr0.2Ga0.83Mg0.17O2.815 as a solid electrolyte and La0.8Sr0.2(Ga0.75Co0.25)0.8Mg0.2O3−δ as a dense diffusion barrier. The oxygen-sensitive characteristic was measured at different oxygen concentrations. The results show that the phase structure of samples is cubic, except La0.8Sr0.2(Ga0.75Co0.25)0.8Mg0.2O3−δ , which has a hexagonal structure. The change in activation energy for electrical conductivity and the increase in thermal expansion coefficient are confirmed to correlate with an increasing concentration of oxygen vacancies. The limiting current oxygen sensor exhibits a good limiting current platform and the limiting current depends linearly on the oxygen concentration: I L(mA) = 12.8519 + 2.2667 \(x_{{\text{O}_{\text{2}} }}\) (mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 3.31) at 750 °C, I L(mA) = 14.3222 + 3.5180 \(x_{{\text{O}_{\text{2}} }}\) (mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 4.16) at 800 °C, and I L(mA) = 15.2872 + 5.0269\(x_{{\text{O}_{\text{2}} }}\)(mol%, 0 < \(x_{{{\text{O}}_{ 2} }}\) < 4.12) at 850 °C. The sensor has the best sensitivity at 850 °C. As the oxygen concentration increases, the interface resistance of the sensor decreases at 850 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Garzon, I. Raistrick, E. Brosha, R. Houlton, and B.W. Chung, Dense Diffusion Barrier Limiting Current Oxygen Sensors, Sens. Actuators B Chem., 1998, 50, p 125–130CrossRef F. Garzon, I. Raistrick, E. Brosha, R. Houlton, and B.W. Chung, Dense Diffusion Barrier Limiting Current Oxygen Sensors, Sens. Actuators B Chem., 1998, 50, p 125–130CrossRef
2.
go back to reference Z.Y. Peng, M.L. Liu, and E. Balko, A New Type of Amperometric Oxygen Sensor Based on a Mixed-Conducting Composite Membrane, Sens. Actuators B Chem., 2001, 72, p 35–40CrossRef Z.Y. Peng, M.L. Liu, and E. Balko, A New Type of Amperometric Oxygen Sensor Based on a Mixed-Conducting Composite Membrane, Sens. Actuators B Chem., 2001, 72, p 35–40CrossRef
3.
go back to reference H. Jiang, J.W. Jian, K. Chen, and Y.Y. Gu, Preparation and Properties of New Dense Diffusion Barrier Limiting Current Oxygen Sensor, J. Chin. Ceram. Soc., 2012, 40, p 1818–1822 H. Jiang, J.W. Jian, K. Chen, and Y.Y. Gu, Preparation and Properties of New Dense Diffusion Barrier Limiting Current Oxygen Sensor, J. Chin. Ceram. Soc., 2012, 40, p 1818–1822
4.
go back to reference B.G. He, T. Liu, J.Z. Guan, and C. Cheng, Preparation and Property of Limiting Current Oxygen Sensor with Sr0.9Y0.1CoO3−δ Dense Diffusion Barrier, J. Chin. Ceram. Soc. Chem., 2012, 42, p 268–274 B.G. He, T. Liu, J.Z. Guan, and C. Cheng, Preparation and Property of Limiting Current Oxygen Sensor with Sr0.9Y0.1CoO3−δ Dense Diffusion Barrier, J. Chin. Ceram. Soc. Chem., 2012, 42, p 268–274
5.
go back to reference T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite-Type Oxide as a New Oxide Ionic Conductor, J. Am. Chem. Soc., 1994, 116, p 3801–3803CrossRef T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite-Type Oxide as a New Oxide Ionic Conductor, J. Am. Chem. Soc., 1994, 116, p 3801–3803CrossRef
6.
go back to reference M. Feng and J.B. Goodenough, A Superior Oxide-Ion Electrolyte, Eur. J. Solid State Inorg. Chem., 1994, 31, p 663–672 M. Feng and J.B. Goodenough, A Superior Oxide-Ion Electrolyte, Eur. J. Solid State Inorg. Chem., 1994, 31, p 663–672
7.
go back to reference T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Springer, New York, 2009CrossRef T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Springer, New York, 2009CrossRef
8.
go back to reference I. Tadashi and S. Keiichi, Low Temperature Operation of Thin-Film Limiting-Current Type Oxygen Sensor Using Graded-Composition Layer Electrodes, Sens. Actuators B Chem., 2008, 129, p 874–880CrossRef I. Tadashi and S. Keiichi, Low Temperature Operation of Thin-Film Limiting-Current Type Oxygen Sensor Using Graded-Composition Layer Electrodes, Sens. Actuators B Chem., 2008, 129, p 874–880CrossRef
9.
go back to reference J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, Nonstoichiometry of the Perovskite-Type Oxides La1−x Sr x CoO3−δ , J. Solid State Chem., 1989, 80, p 102CrossRef J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, Nonstoichiometry of the Perovskite-Type Oxides La1−x Sr x CoO3−δ , J. Solid State Chem., 1989, 80, p 102CrossRef
10.
go back to reference H. Kishimoto, N. Sakai, T. Horita, K. Yamaji, M.E. Brito et al., Cation Transport Behavior in SOFC Cathode Materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with Perovskite Structure, Solid State Ionics, 2007, 178, p 1317–1325CrossRef H. Kishimoto, N. Sakai, T. Horita, K. Yamaji, M.E. Brito et al., Cation Transport Behavior in SOFC Cathode Materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with Perovskite Structure, Solid State Ionics, 2007, 178, p 1317–1325CrossRef
11.
go back to reference N. Trofimenko and H. Ullmann, Transition Metal Doped Lanthanum Gallates, Solid State Ionics, 1999, 118, p 215–227CrossRef N. Trofimenko and H. Ullmann, Transition Metal Doped Lanthanum Gallates, Solid State Ionics, 1999, 118, p 215–227CrossRef
12.
go back to reference F.L. Chen and M.L. Liu, Study of Transition Metal Oxide Doped LaGaO3 as Electrode Materials for LSGM-Based Solid Oxide Fuel Cells, J. Solid State Electrochem., 1998, 3, p 7–14CrossRef F.L. Chen and M.L. Liu, Study of Transition Metal Oxide Doped LaGaO3 as Electrode Materials for LSGM-Based Solid Oxide Fuel Cells, J. Solid State Electrochem., 1998, 3, p 7–14CrossRef
13.
go back to reference T. Liu, Y. Li, and J.B. Goodenough, Sr0.7Ho0.3CoO3–δ as a Potential Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2012, 199, p 161–164CrossRef T. Liu, Y. Li, and J.B. Goodenough, Sr0.7Ho0.3CoO3–δ as a Potential Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2012, 199, p 161–164CrossRef
14.
go back to reference L.J. Van der Pauw, A Method of Measuring Specific Resistivity and Hall Effect Of Discs of Arbitrary Shape, Philips Res. Rep., 1958, 13, p 1–9 L.J. Van der Pauw, A Method of Measuring Specific Resistivity and Hall Effect Of Discs of Arbitrary Shape, Philips Res. Rep., 1958, 13, p 1–9
15.
go back to reference A. Esquirol, N.P. Brandon, J.A. Kilner, and M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs, J. Electrochem. Soc., 2004, 151, p A1847–A1855CrossRef A. Esquirol, N.P. Brandon, J.A. Kilner, and M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs, J. Electrochem. Soc., 2004, 151, p A1847–A1855CrossRef
16.
go back to reference E. Djurado and M. Labeau, Second Phases in Doped Lanthanum Gallate Perovskites, J. Eur. Ceram. Soc., 1998, 18, p 1397–1404CrossRef E. Djurado and M. Labeau, Second Phases in Doped Lanthanum Gallate Perovskites, J. Eur. Ceram. Soc., 1998, 18, p 1397–1404CrossRef
17.
go back to reference E.D. Politova, V.V. Aleksandrovskii, G.M. Kaleva, A.V. Mosunov, S.V. Suvorkin, S.V. Zaitsev, J.S. Sung, K.Y. Choo, and T.H. Kim, Mixed conducting Perovskite-Like Ceramics on the Base of Lanthanum Gallate, Solid State Ionics, 2006, 177, p 1779–1783CrossRef E.D. Politova, V.V. Aleksandrovskii, G.M. Kaleva, A.V. Mosunov, S.V. Suvorkin, S.V. Zaitsev, J.S. Sung, K.Y. Choo, and T.H. Kim, Mixed conducting Perovskite-Like Ceramics on the Base of Lanthanum Gallate, Solid State Ionics, 2006, 177, p 1779–1783CrossRef
18.
go back to reference E.D. Politova, S.Y. Stefanovich, A.K. Avetisov, V.V. Aleksandrovskii, T.Y. Glavatskih, N.V. Golubko, G.M. Kaleva, A.S. Mosunov, and N.U. Venskovskii, Processing, Structure, Microstructure, and Transport Properties of the Oxygen-Conducting Ceramics (La, Sr)(Ga, M)O y (M=Mg, Fe, Ni), J. Solid State Electrochem., 2004, 8, p 655–660CrossRef E.D. Politova, S.Y. Stefanovich, A.K. Avetisov, V.V. Aleksandrovskii, T.Y. Glavatskih, N.V. Golubko, G.M. Kaleva, A.S. Mosunov, and N.U. Venskovskii, Processing, Structure, Microstructure, and Transport Properties of the Oxygen-Conducting Ceramics (La, Sr)(Ga, M)O y (M=Mg, Fe, Ni), J. Solid State Electrochem., 2004, 8, p 655–660CrossRef
19.
go back to reference V.V. Kharton, A.P. Viskup, A.A. Yaremchenko, R.T. Baker, G.C. Gharbage, G.C. Mather, F.M. Figueiredo, E.N. Naumovich, and F.M.B. Marques, Ionic Conductivity of La(Sr)Ga(Mg, M)O3−δ (M=Ti, Cr, Fe Co, Ni): Effects Of Transition Metal Dopants, Solid State Ionics, 2000, 132, p 119–130CrossRef V.V. Kharton, A.P. Viskup, A.A. Yaremchenko, R.T. Baker, G.C. Gharbage, G.C. Mather, F.M. Figueiredo, E.N. Naumovich, and F.M.B. Marques, Ionic Conductivity of La(Sr)Ga(Mg, M)O3−δ (M=Ti, Cr, Fe Co, Ni): Effects Of Transition Metal Dopants, Solid State Ionics, 2000, 132, p 119–130CrossRef
20.
go back to reference V.V. Kharton, A.P. Viskup, E.N. Naumovich, and N.M. Lapchuk, Mixed Electronic And Ionic Conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni) I. Oxygen Transport in Perovskites LaCoO3-LaGaO3, Solid State Ionics, 1997, 104, p 67–78CrossRef V.V. Kharton, A.P. Viskup, E.N. Naumovich, and N.M. Lapchuk, Mixed Electronic And Ionic Conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni) I. Oxygen Transport in Perovskites LaCoO3-LaGaO3, Solid State Ionics, 1997, 104, p 67–78CrossRef
21.
go back to reference T. Usui, A. Asada, M. Nakazawa, and H. Osanai, Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte, J. Electrochem. Soc., 1989, 136, p 534–542CrossRef T. Usui, A. Asada, M. Nakazawa, and H. Osanai, Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte, J. Electrochem. Soc., 1989, 136, p 534–542CrossRef
22.
go back to reference K. Saji, H. Kondo, H. Takahashi, T. Takeuchi, and I. Igarashi, Influence of H2O, CO2 and Various Combustible Gases on the Characteristics Of A Limiting Current-Type Oxygen Sensor, J. Appl. Electrochem., 1988, 18, p 757–762CrossRef K. Saji, H. Kondo, H. Takahashi, T. Takeuchi, and I. Igarashi, Influence of H2O, CO2 and Various Combustible Gases on the Characteristics Of A Limiting Current-Type Oxygen Sensor, J. Appl. Electrochem., 1988, 18, p 757–762CrossRef
23.
go back to reference L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953 L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953
24.
go back to reference R. Ramamoorthy, P.K. Dutta, and S.A. Akbar, Oxygen Sensors: Materials, Methods, Designs, and Applications, J. Mater. Sci., 2003, 38, p 4271–4282CrossRef R. Ramamoorthy, P.K. Dutta, and S.A. Akbar, Oxygen Sensors: Materials, Methods, Designs, and Applications, J. Mater. Sci., 2003, 38, p 4271–4282CrossRef
25.
go back to reference E. Ivers-Tiffée, K.H. Härdtl, W. Menesklou, and J. Riegel, Principles of Solid State Oxygen Sensors for Lean Combustion Gas Control, Electrochim. Acta, 2001, 47, p 807–814CrossRef E. Ivers-Tiffée, K.H. Härdtl, W. Menesklou, and J. Riegel, Principles of Solid State Oxygen Sensors for Lean Combustion Gas Control, Electrochim. Acta, 2001, 47, p 807–814CrossRef
26.
go back to reference J.X. Han, F. Zhou, J.X. Bao, X.J. Wang, and X.W. Song, A High Performance Limiting Current Oxygen Sensor with Ce0.8Sm0.2O1.9 Electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 Diffusion Barrier, Electrochim. Acta, 2013, 108, p 763–768CrossRef J.X. Han, F. Zhou, J.X. Bao, X.J. Wang, and X.W. Song, A High Performance Limiting Current Oxygen Sensor with Ce0.8Sm0.2O1.9 Electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 Diffusion Barrier, Electrochim. Acta, 2013, 108, p 763–768CrossRef
Metadata
Title
A Limiting Current Oxygen Sensor Based on LSGM as a Solid Electrolyte and LSGMN (N = Fe, Co) as a Dense Diffusion Barrier
Authors
Tao Liu
Xiang Gao
Bei-Gang He
Jing-Kun Yu
Publication date
10-06-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2171-8

Other articles of this Issue 7/2016

Journal of Materials Engineering and Performance 7/2016 Go to the issue

Premium Partners