Skip to main content
Top

2018 | OriginalPaper | Chapter

A Micromorphic Damage-Plasticity Model to Counteract Mesh Dependence in Finite Element Simulations Involving Material Softening

Authors : Tim Brepols, Stephan Wulfinghoff, Stefanie Reese

Published in: Multiscale Modeling of Heterogeneous Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A gradient-extended damage-plasticity material model is presented which belongs to the class of micromophic media as proposed by Forest (J Eng Mech 135:117–131, 2009) [17]. A ‘two-surface’ formulation is utilized in which damage and plasticity are treated as independent but strongly coupled dissipative phenomena. To this end, separate yield and damage criteria as well as loading/unloading conditions are introduced. The model is thermodynamically consistent and accounts for both nonlinear kinematic and isotropic hardening as well as damage hardening. Various theoretical and numerical aspects of the formulation are discussed. Emphasis is also put on a procedure to enforce stress constraints at the local integration point level which provides, for instance, the basis for a straightforward integration of 3D gradient-extended material models into beam or shell elements or for their usage in 2D plane stress computations. A structural example problem illustrates the merits of the model and its ability to deliver mesh-independent results in coupled damage-plasticity finite element simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
\(\nabla ^{\text {s}}\left( \bullet \right) := \frac{1}{2} \left[ \left( \bullet \right) + \left( \bullet \right) ^{\text {T}} \right] \) denotes the symmetric part of a quantity \(\left( \bullet \right) \).
 
2
\(\left( \bullet \right) ^{\prime } := \left( \bullet \right) - \frac{1}{3}\,\text {trace}\left( \bullet \right) \,\mathbf {I}\) denotes the deviatoric part of a second-order tensor \(\left( \bullet \right) \).
 
3
In the following, if not explicitly denoted otherwise, any quantity is referred to time \(t_{n+1}=t_{n} + \varDelta t\).
 
4
The corresponding residuals in case of a purely elastoplastic step or elastic step with concurrently evolving damage are obtained by deleting either \(r_{3}\) or \(\mathbf {r}_{1}\) and \(r_{2}\) in (29), respectively.
 
5
Remember that, during the considered time interval, \(\varvec{\sigma }\) and D do additionally depend on the history variables at time \(t_{n}\) which are, however, constant within \([t_{n},\,t_{n+1}]\).
 
6
No extra symbols are introduced to avoid an excessive proliferation of notation. The change in meaning of the quantities is implicitly understood.
 
7
Quadrilateral elements are preferred in the meshing process, triangular ones are only used rarely as transitional elements.
 
8
The top and bottom values in the legends of the contour plots always indicate the corresponding minimum and maximum values attained in the computations.
 
Literature
1.
go back to reference Aravas, N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Meth. Eng. 24(7), 1395–1416 (1987)CrossRefMATH Aravas, N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Meth. Eng. 24(7), 1395–1416 (1987)CrossRefMATH
2.
go back to reference Auricchio, F., Bonetti, E., Scalet, G., Ubertini, F.: Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. Int. J. Plast. 59, 30–54 (2014)CrossRef Auricchio, F., Bonetti, E., Scalet, G., Ubertini, F.: Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. Int. J. Plast. 59, 30–54 (2014)CrossRef
3.
go back to reference Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. ZAMM J. Appl. Math. Mech. 89(10), 792–809 (2009)CrossRefMATH Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. ZAMM J. Appl. Math. Mech. 89(10), 792–809 (2009)CrossRefMATH
4.
go back to reference Bažant, Z.P., Belytschko, T., Chang, T.-P.: Continuum theory for strain-softening. J. Eng. Mech. 110(12), 1666–1692 (1984)CrossRef Bažant, Z.P., Belytschko, T., Chang, T.-P.: Continuum theory for strain-softening. J. Eng. Mech. 110(12), 1666–1692 (1984)CrossRef
5.
go back to reference Bayerschen, E., Stricker, M., Wulfinghoff, S., Weygand, D., Böhlke, T.: Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc. R. Soc. A 471(2184) (2015) Bayerschen, E., Stricker, M., Wulfinghoff, S., Weygand, D., Böhlke, T.: Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc. R. Soc. A 471(2184) (2015)
6.
go back to reference Brepols, T., Wulfinghoff, S., Reese, S.: Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int. J. Plast. 97, 64–106 (2017) Brepols, T., Wulfinghoff, S., Reese, S.: Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int. J. Plast. 97, 64–106 (2017)
7.
go back to reference Cervera, M., Chiumenti, M.: Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput. Meth. Appl. Mech. Eng. 196(1–3), 304–320 (2006)CrossRefMATH Cervera, M., Chiumenti, M.: Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput. Meth. Appl. Mech. Eng. 196(1–3), 304–320 (2006)CrossRefMATH
8.
go back to reference Chaboche, J.-L.: Thermodynamics of local state: overall aspects and micromechanics based constitutive relations. Tech. Mech. 23(2–4), 113–119 (2003) Chaboche, J.-L.: Thermodynamics of local state: overall aspects and micromechanics based constitutive relations. Tech. Mech. 23(2–4), 113–119 (2003)
9.
go back to reference Chow, C.L., Wang, J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech 27(5), 547–558 (1987)CrossRef Chow, C.L., Wang, J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech 27(5), 547–558 (1987)CrossRef
10.
go back to reference de Borst, R.: The zero-normal-stress condition in plane-stress and shell elastoplasticity. Commun. Appl. Numer. Meth. 7(1), 29–33 (1991)CrossRefMATH de Borst, R.: The zero-normal-stress condition in plane-stress and shell elastoplasticity. Commun. Appl. Numer. Meth. 7(1), 29–33 (1991)CrossRefMATH
11.
go back to reference de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)CrossRef de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10(2), 99–121 (1993)CrossRef
12.
go back to reference Dimitrijevic, B.J., Hackl, K.: A method for gradient enhancement of continuum damage models. Tech. Mech. 28(1), 43–52 (2008) Dimitrijevic, B.J., Hackl, K.: A method for gradient enhancement of continuum damage models. Tech. Mech. 28(1), 43–52 (2008)
13.
go back to reference Dimitrijevic, B.J., Hackl, K.: A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Method. Biomed. Eng. 27(8), 1199–1210 (2011)MathSciNetCrossRefMATH Dimitrijevic, B.J., Hackl, K.: A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Method. Biomed. Eng. 27(8), 1199–1210 (2011)MathSciNetCrossRefMATH
14.
go back to reference Dodds, R.H.: Numerical techniques for plasticity computations in finite element analysis. Comput. Struct. 26(5), 767–779 (1987)CrossRefMATH Dodds, R.H.: Numerical techniques for plasticity computations in finite element analysis. Comput. Struct. 26(5), 767–779 (1987)CrossRefMATH
15.
go back to reference Duda, F.P., Ciarbonetti, A., Sánchez, P.J., Huespe, A.E.: A phase-field/gradient damage model for brittle fracture in elastic-plastic solids. Int. J. Plast. 65, 269–296 (2015)CrossRef Duda, F.P., Ciarbonetti, A., Sánchez, P.J., Huespe, A.E.: A phase-field/gradient damage model for brittle fracture in elastic-plastic solids. Int. J. Plast. 65, 269–296 (2015)CrossRef
16.
go back to reference Dvorkin, E.N., Pantuso, D., Repetto, E.A.: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Meth. Appl. Mech. Eng. 125(1), 17–40 (1995)CrossRef Dvorkin, E.N., Pantuso, D., Repetto, E.A.: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Meth. Appl. Mech. Eng. 125(1), 17–40 (1995)CrossRef
17.
go back to reference Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)CrossRef Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)CrossRef
18.
go back to reference Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472(2188), 20150755 (27 pages) (2016) Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472(2188), 20150755 (27 pages) (2016)
19.
go back to reference Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50(4b), 1010–1020 (1983)CrossRefMATH Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50(4b), 1010–1020 (1983)CrossRefMATH
20.
go back to reference Grassl, P., Jirásek, M.: On mesh bias of local damage models for concrete. In: Proceedings of FraMCoS-5, pp. 252–262. Vail, USA (2004) Grassl, P., Jirásek, M.: On mesh bias of local damage models for concrete. In: Proceedings of FraMCoS-5, pp. 252–262. Vail, USA (2004)
21.
go back to reference Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.W.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solid. 61(5), 1241–1264 (2013)MathSciNetCrossRef Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.W.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solid. 61(5), 1241–1264 (2013)MathSciNetCrossRef
22.
go back to reference Hütter, G., Linse, T., Mühlich, U., Kuna, M.: Simulation of ductile crack initiation and propagation by means of a non-local gurson-model. Int. J. Solid. Struct. 50(5), 662–671 (2013)CrossRef Hütter, G., Linse, T., Mühlich, U., Kuna, M.: Simulation of ductile crack initiation and propagation by means of a non-local gurson-model. Int. J. Solid. Struct. 50(5), 662–671 (2013)CrossRef
23.
go back to reference Hütter, G., Roth, T.L.S., Mühlich, U., Kuna, M.: A modeling approach for the complete ductile-brittle transition region: cohesive zone in combination with a non-local gurson-model. Int. J. Fract. 185(1), 129–153 (2014)CrossRef Hütter, G., Roth, T.L.S., Mühlich, U., Kuna, M.: A modeling approach for the complete ductile-brittle transition region: cohesive zone in combination with a non-local gurson-model. Int. J. Fract. 185(1), 129–153 (2014)CrossRef
24.
go back to reference Jetteur, P.: Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng. Comput. 3(3), 251–253 (1986)CrossRef Jetteur, P.: Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng. Comput. 3(3), 251–253 (1986)CrossRef
25.
go back to reference Jirásek, M., Grassl, P.: Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng. Fract. Mech 75(8), 1921–1943 (2008)CrossRef Jirásek, M., Grassl, P.: Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng. Fract. Mech 75(8), 1921–1943 (2008)CrossRef
26.
go back to reference Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solid. Struct. 25(7), 803–833 (1989)CrossRefMATH Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solid. Struct. 25(7), 803–833 (1989)CrossRefMATH
27.
go back to reference Junker, P., Schwarz, S., Makowsk, J., Hackl, K.: A relaxation-based approach to damage modeling. Continuum Mech. Therm. 29(1), 291–310 (2016)MathSciNetCrossRefMATH Junker, P., Schwarz, S., Makowsk, J., Hackl, K.: A relaxation-based approach to damage modeling. Continuum Mech. Therm. 29(1), 291–310 (2016)MathSciNetCrossRefMATH
28.
go back to reference Kachanov, L.M.: ‘Time of the rupture process under creep conditions’, Izvestiya Akademii Nauk SSSR. Otdelenie Tekhnicheskikh Nauk 8, 26–31 (1958) Kachanov, L.M.: ‘Time of the rupture process under creep conditions’, Izvestiya Akademii Nauk SSSR. Otdelenie Tekhnicheskikh Nauk 8, 26–31 (1958)
29.
go back to reference Kachanov, M.: Elastic solids with many cracks and related problems. In: Hutchinson, J. W., Wu, T. Y. (eds.) Advances in Applied Mechanics, vol. 30, pp. 259–445. Elsevier (1993) Kachanov, M.: Elastic solids with many cracks and related problems. In: Hutchinson, J. W., Wu, T. Y. (eds.) Advances in Applied Mechanics, vol. 30, pp. 259–445. Elsevier (1993)
30.
go back to reference Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (8 pages) (2012) Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (8 pages) (2012)
31.
go back to reference Kiefer, B., Waffenschmidt, T., Sprave, L., Menzel, A.: A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts. Int. J. Damage Mech. 1–43 (2017) Kiefer, B., Waffenschmidt, T., Sprave, L., Menzel, A.: A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts. Int. J. Damage Mech. 1–43 (2017)
32.
go back to reference Kirchner, E., Reese, S., Wriggers, P.: A finite element method for plane stress problems with large elastic and plastic deformations. Commun. Numer. Meth. Eng. 13(12), 963–976 (1997)MathSciNetCrossRefMATH Kirchner, E., Reese, S., Wriggers, P.: A finite element method for plane stress problems with large elastic and plastic deformations. Commun. Numer. Meth. Eng. 13(12), 963–976 (1997)MathSciNetCrossRefMATH
33.
go back to reference Klinkel, S., Govindjee, S.: Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(8), 902–921 (2002)CrossRefMATH Klinkel, S., Govindjee, S.: Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(8), 902–921 (2002)CrossRefMATH
34.
go back to reference Lemaitre, J.: Evaluation of dissipation and damage in metals submitted to dynamic loading. In: Proceedings International Conference Mechanical Behavior of Materials, vol. 1. Kyoto, Japan (1971) Lemaitre, J.: Evaluation of dissipation and damage in metals submitted to dynamic loading. In: Proceedings International Conference Mechanical Behavior of Materials, vol. 1. Kyoto, Japan (1971)
35.
go back to reference Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials, 1st edn. Cambridge University Press (1990) Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials, 1st edn. Cambridge University Press (1990)
36.
go back to reference Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000)CrossRefMATH Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000)CrossRefMATH
37.
go back to reference Miehe, C.: Variational gradient plasticity at finite strains. Part I: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Meth. Appl. Mech. Eng. 268, 677–703 (2014)MathSciNetCrossRefMATH Miehe, C.: Variational gradient plasticity at finite strains. Part I: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Meth. Appl. Mech. Eng. 268, 677–703 (2014)MathSciNetCrossRefMATH
38.
go back to reference Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRef Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)CrossRef
39.
go back to reference Miehe, C., Welschinger, F., Aldakheel, F.: Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput. Meth. Appl. Mech. Eng. 268, 704–734 (2014)MathSciNetCrossRefMATH Miehe, C., Welschinger, F., Aldakheel, F.: Variational gradient plasticity at finite strains. Part II: local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput. Meth. Appl. Mech. Eng. 268, 704–734 (2014)MathSciNetCrossRefMATH
40.
go back to reference Mozaffari, N., Voyiadjis, G.Z.: Coupled gradient damage—viscoplasticty model for ductile materials: phase field approach. Int. J. Plast. 83, 55–73 (2016)CrossRef Mozaffari, N., Voyiadjis, G.Z.: Coupled gradient damage—viscoplasticty model for ductile materials: phase field approach. Int. J. Plast. 83, 55–73 (2016)CrossRef
41.
go back to reference Naderi, M., Jung, J., Yang, Q.D.: A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. 197(2), 147–168 (2016)CrossRef Naderi, M., Jung, J., Yang, Q.D.: A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. 197(2), 147–168 (2016)CrossRef
42.
go back to reference Pietryga, M.P., Vladimirov, I.N., Reese, S.: A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation. Mech. Mater. 44, 163–173 (2012)CrossRef Pietryga, M.P., Vladimirov, I.N., Reese, S.: A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation. Mech. Mater. 44, 163–173 (2012)CrossRef
43.
go back to reference Rabotnov, Y. N.: Paper 68: on the equation of state of creep. Proc. Inst. Mech. Eng. (Conf. Proc.) 178(1), 117–122 (1963) Rabotnov, Y. N.: Paper 68: on the equation of state of creep. Proc. Inst. Mech. Eng. (Conf. Proc.) 178(1), 117–122 (1963)
44.
go back to reference Reese, S.: On the equivalent of mixed element formulations and the concept of reduced integration in large deformation problems. Int. J. Nonlinear Sci. Numer. Simul. 3(1), 1–34 (2002)MathSciNetCrossRefMATH Reese, S.: On the equivalent of mixed element formulations and the concept of reduced integration in large deformation problems. Int. J. Nonlinear Sci. Numer. Simul. 3(1), 1–34 (2002)MathSciNetCrossRefMATH
45.
go back to reference Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Meth. Eng. 57(8), 1095–1127 (2003)MathSciNetCrossRefMATH Reese, S.: On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int. J. Numer. Meth. Eng. 57(8), 1095–1127 (2003)MathSciNetCrossRefMATH
46.
go back to reference Reese, S.: On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Comput. Meth. Appl. Mech. Eng. 194(45), 4685–4715 (2005)CrossRefMATH Reese, S.: On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Comput. Meth. Appl. Mech. Eng. 194(45), 4685–4715 (2005)CrossRefMATH
47.
go back to reference Saanouni, K., Forster, C., Ben Hatira, F.: On the anelastic flow with damage. Int. J. Damage Mech. 3(2), 140–169 (1994)CrossRefMATH Saanouni, K., Forster, C., Ben Hatira, F.: On the anelastic flow with damage. Int. J. Damage Mech. 3(2), 140–169 (1994)CrossRefMATH
48.
go back to reference Saanouni, K., Hamed, M.: Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int. J. Solid. Struct. 50(14–15), 2289–2309 (2013)CrossRef Saanouni, K., Hamed, M.: Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. Int. J. Solid. Struct. 50(14–15), 2289–2309 (2013)CrossRef
49.
go back to reference Seabra, M.R.R., Šuštarič, P., Cesar de Sa, J.M.A., Rodič, T.: Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 52(1), 161–179 (2013)MathSciNetCrossRefMATH Seabra, M.R.R., Šuštarič, P., Cesar de Sa, J.M.A., Rodič, T.: Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 52(1), 161–179 (2013)MathSciNetCrossRefMATH
50.
go back to reference Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Numer. Meth. Eng. 26(10), 2161–2185 (1988)CrossRefMATH Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Numer. Meth. Eng. 26(10), 2161–2185 (1988)CrossRefMATH
51.
go back to reference Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Meth. Eng. 22(3), 649–670 (1986)MathSciNetCrossRefMATH Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Meth. Eng. 22(3), 649–670 (1986)MathSciNetCrossRefMATH
52.
go back to reference Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Encyclopedia of Physics, vol. III/3. Springer, Berlin, Heidelberg (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Encyclopedia of Physics, vol. III/3. Springer, Berlin, Heidelberg (1965)
53.
go back to reference Vladimirov, I.N., Pietryga, M.P., Kiliclar, Y., Tini, V., Reese, S.: Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage. Int. J. Damage Mech. 23(8), 1096–1132 (2014)CrossRef Vladimirov, I.N., Pietryga, M.P., Kiliclar, Y., Tini, V., Reese, S.: Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage. Int. J. Damage Mech. 23(8), 1096–1132 (2014)CrossRef
54.
go back to reference Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int. J. Numer. Meth. Eng. 75(1), 1–28 (2008)CrossRefMATH Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int. J. Numer. Meth. Eng. 75(1), 1–28 (2008)CrossRefMATH
55.
go back to reference Vladimirov, I.N., Pietryga, M.P., Reese, S.: Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening. J. Mater. Process. Tech. 209(8), 4062–4075 (2009)CrossRef Vladimirov, I.N., Pietryga, M.P., Reese, S.: Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening. J. Mater. Process. Tech. 209(8), 4062–4075 (2009)CrossRef
56.
go back to reference Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26(5), 659–687 (2010)CrossRefMATH Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26(5), 659–687 (2010)CrossRefMATH
57.
go back to reference Waffenschmidt, T., Polindara, C., Menzel, A., Blanco, S.: A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput. Meth. Appl. Mech. Eng. 268, 801–842 (2014)MathSciNetCrossRefMATH Waffenschmidt, T., Polindara, C., Menzel, A., Blanco, S.: A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput. Meth. Appl. Mech. Eng. 268, 801–842 (2014)MathSciNetCrossRefMATH
58.
go back to reference Wulfinghoff, S., Bayerschen, E., Böhlke, T.: A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)CrossRef Wulfinghoff, S., Bayerschen, E., Böhlke, T.: A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)CrossRef
59.
go back to reference Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A 468(2145), 2682–2703 (2012)MathSciNetCrossRefMATH Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A 468(2145), 2682–2703 (2012)MathSciNetCrossRefMATH
60.
go back to reference Ziemann, M., Chen, Y., Kraft, O., Bayerschen, E., Wulfinghoff, S., Kirchlechner, C., Tamura, N., Böhlke, T., Walter, M., Gruber, P.A.: Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater. 97, 216–222 (2015)CrossRef Ziemann, M., Chen, Y., Kraft, O., Bayerschen, E., Wulfinghoff, S., Kirchlechner, C., Tamura, N., Böhlke, T., Walter, M., Gruber, P.A.: Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater. 97, 216–222 (2015)CrossRef
Metadata
Title
A Micromorphic Damage-Plasticity Model to Counteract Mesh Dependence in Finite Element Simulations Involving Material Softening
Authors
Tim Brepols
Stephan Wulfinghoff
Stefanie Reese
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65463-8_12

Premium Partners