Skip to main content
Top
Published in: Calcolo 1/2021

01-03-2021

A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity

Authors: Gabriel N. Gatica, Antonio Márquez, Salim Meddahi

Published in: Calcolo | Issue 1/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce and analyze a new mixed finite element method with reduced symmetry for the standard linear model in viscoelasticity. Following a previous approach employed for linear elastodynamics, the present problem is formulated as a second-order hyperbolic partial differential equation in which, after using the motion equation to eliminate the displacement unknown, the stress tensor remains as the main variable to be found. The resulting variational formulation is shown to be well-posed, and a class of \(\text {H}(\text {div})\)-conforming semi-discrete schemes is proved to be convergent. Then, we use the Newmark trapezoidal rule to obtain an associated fully discrete scheme, whose main convergence results are also established. Finally, numerical examples illustrating the performance of the method are reported.
Literature
1.
go back to reference Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984)MathSciNetCrossRef Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984)MathSciNetCrossRef
2.
go back to reference Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)MathSciNetCrossRef Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)MathSciNetCrossRef
3.
go back to reference Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 274–2769 (2014)MathSciNetCrossRef Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 274–2769 (2014)MathSciNetCrossRef
4.
go back to reference Bécache, E., Ezziani, A., Joly, P.: A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8, 255–299 (2005)MathSciNetCrossRef Bécache, E., Ezziani, A., Joly, P.: A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8, 255–299 (2005)MathSciNetCrossRef
5.
go back to reference Bécache, E., Joly, P., Tsogka, C.: A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39(6), 2109–2132 (2002)MathSciNetCrossRef Bécache, E., Joly, P., Tsogka, C.: A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39(6), 2109–2132 (2002)MathSciNetCrossRef
6.
go back to reference Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)MathSciNetCrossRef Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)MathSciNetCrossRef
7.
go back to reference Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013) Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)
8.
go back to reference Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79, 1331–1349 (2010)MathSciNetCrossRef Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79, 1331–1349 (2010)MathSciNetCrossRef
9.
go back to reference Evans, L.C.: Partial Differential Equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010) Evans, L.C.: Partial Differential Equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)
10.
go back to reference Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)CrossRef Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)CrossRef
11.
go back to reference García, C., Gatica, G.N., Meddahi, S.: A new mixed finite element method for elastodynamics with weak symmetry. J. Sci. Comput. 72(3), 1049–1079 (2017)MathSciNetCrossRef García, C., Gatica, G.N., Meddahi, S.: A new mixed finite element method for elastodynamics with weak symmetry. J. Sci. Comput. 72(3), 1049–1079 (2017)MathSciNetCrossRef
12.
go back to reference Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer Science & Business Media (2012)MATH Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer Science & Business Media (2012)MATH
13.
go back to reference Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, 291–356 (1962)MathSciNetCrossRef Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, 291–356 (1962)MathSciNetCrossRef
14.
go back to reference Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32, 352–372 (2012)MathSciNetCrossRef Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32, 352–372 (2012)MathSciNetCrossRef
15.
go back to reference Idesman, A., Niekamp, R., Stein, E.: Finite elements in space and time for generalized viscoelastic Maxwell model. Comput. Mech. 27, 49–60 (2001)MathSciNetCrossRef Idesman, A., Niekamp, R., Stein, E.: Finite elements in space and time for generalized viscoelastic Maxwell model. Comput. Mech. 27, 49–60 (2001)MathSciNetCrossRef
16.
go back to reference Janovsky, V., Shaw, S., Warby, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63(1–3), 91–107 (1995)MathSciNetCrossRef Janovsky, V., Shaw, S., Warby, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63(1–3), 91–107 (1995)MathSciNetCrossRef
17.
go back to reference Lee, J.J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity. Calcolo 54(2), 587–607 (2017)MathSciNetCrossRef Lee, J.J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity. Calcolo 54(2), 587–607 (2017)MathSciNetCrossRef
18.
go back to reference Marques, S.P., Creus, G.J.: Computational Viscoelasticity. Springer Science & Business Media, Berlin (2012)CrossRef Marques, S.P., Creus, G.J.: Computational Viscoelasticity. Springer Science & Business Media, Berlin (2012)CrossRef
19.
go back to reference Renardy, M., Rogers, R.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, 13. Springer, New York (2004) Renardy, M., Rogers, R.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, 13. Springer, New York (2004)
20.
go back to reference Rivière, B., Shaw, S., Wheeler, M., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)MathSciNetCrossRef Rivière, B., Shaw, S., Wheeler, M., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)MathSciNetCrossRef
21.
go back to reference Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)MathSciNetCrossRef Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)MathSciNetCrossRef
22.
go back to reference Rognes, M., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)MathSciNetCrossRef Rognes, M., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)MathSciNetCrossRef
23.
go back to reference Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Second edition. International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, (2013) Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Second edition. International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, (2013)
24.
25.
go back to reference Shaw, S., Warby, M.K., Whiteman, J.R., Dawson, C., Wheeler, M.F.: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118, 211–237 (1994)MathSciNetCrossRef Shaw, S., Warby, M.K., Whiteman, J.R., Dawson, C., Wheeler, M.F.: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118, 211–237 (1994)MathSciNetCrossRef
26.
go back to reference Shaw, S., Whiteman, J.R.: Numerical solution of linear quasistatic hereditary viscoelasticity problems. Siam J. Numer. Anal. 38, 80–97 (2000)MathSciNetCrossRef Shaw, S., Whiteman, J.R.: Numerical solution of linear quasistatic hereditary viscoelasticity problems. Siam J. Numer. Anal. 38, 80–97 (2000)MathSciNetCrossRef
27.
Metadata
Title
A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity
Authors
Gabriel N. Gatica
Antonio Márquez
Salim Meddahi
Publication date
01-03-2021
Publisher
Springer International Publishing
Published in
Calcolo / Issue 1/2021
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00401-0

Other articles of this Issue 1/2021

Calcolo 1/2021 Go to the issue

Premium Partner