Skip to main content
Erschienen in: Calcolo 1/2021

01.03.2021

A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity

verfasst von: Gabriel N. Gatica, Antonio Márquez, Salim Meddahi

Erschienen in: Calcolo | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce and analyze a new mixed finite element method with reduced symmetry for the standard linear model in viscoelasticity. Following a previous approach employed for linear elastodynamics, the present problem is formulated as a second-order hyperbolic partial differential equation in which, after using the motion equation to eliminate the displacement unknown, the stress tensor remains as the main variable to be found. The resulting variational formulation is shown to be well-posed, and a class of \(\text {H}(\text {div})\)-conforming semi-discrete schemes is proved to be convergent. Then, we use the Newmark trapezoidal rule to obtain an associated fully discrete scheme, whose main convergence results are also established. Finally, numerical examples illustrating the performance of the method are reported.
Literatur
1.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984)MathSciNetCrossRef Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984)MathSciNetCrossRef
2.
Zurück zum Zitat Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)MathSciNetCrossRef Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)MathSciNetCrossRef
3.
Zurück zum Zitat Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 274–2769 (2014)MathSciNetCrossRef Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 274–2769 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Bécache, E., Ezziani, A., Joly, P.: A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8, 255–299 (2005)MathSciNetCrossRef Bécache, E., Ezziani, A., Joly, P.: A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8, 255–299 (2005)MathSciNetCrossRef
5.
Zurück zum Zitat Bécache, E., Joly, P., Tsogka, C.: A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39(6), 2109–2132 (2002)MathSciNetCrossRef Bécache, E., Joly, P., Tsogka, C.: A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39(6), 2109–2132 (2002)MathSciNetCrossRef
6.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)MathSciNetCrossRef Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)MathSciNetCrossRef
7.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013) Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)
8.
Zurück zum Zitat Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79, 1331–1349 (2010)MathSciNetCrossRef Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79, 1331–1349 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Evans, L.C.: Partial Differential Equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010) Evans, L.C.: Partial Differential Equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)
10.
Zurück zum Zitat Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)CrossRef Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)CrossRef
11.
Zurück zum Zitat García, C., Gatica, G.N., Meddahi, S.: A new mixed finite element method for elastodynamics with weak symmetry. J. Sci. Comput. 72(3), 1049–1079 (2017)MathSciNetCrossRef García, C., Gatica, G.N., Meddahi, S.: A new mixed finite element method for elastodynamics with weak symmetry. J. Sci. Comput. 72(3), 1049–1079 (2017)MathSciNetCrossRef
12.
Zurück zum Zitat Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer Science & Business Media (2012)MATH Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer Science & Business Media (2012)MATH
13.
Zurück zum Zitat Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, 291–356 (1962)MathSciNetCrossRef Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, 291–356 (1962)MathSciNetCrossRef
14.
Zurück zum Zitat Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32, 352–372 (2012)MathSciNetCrossRef Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32, 352–372 (2012)MathSciNetCrossRef
15.
Zurück zum Zitat Idesman, A., Niekamp, R., Stein, E.: Finite elements in space and time for generalized viscoelastic Maxwell model. Comput. Mech. 27, 49–60 (2001)MathSciNetCrossRef Idesman, A., Niekamp, R., Stein, E.: Finite elements in space and time for generalized viscoelastic Maxwell model. Comput. Mech. 27, 49–60 (2001)MathSciNetCrossRef
16.
Zurück zum Zitat Janovsky, V., Shaw, S., Warby, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63(1–3), 91–107 (1995)MathSciNetCrossRef Janovsky, V., Shaw, S., Warby, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63(1–3), 91–107 (1995)MathSciNetCrossRef
17.
Zurück zum Zitat Lee, J.J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity. Calcolo 54(2), 587–607 (2017)MathSciNetCrossRef Lee, J.J.: Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity. Calcolo 54(2), 587–607 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Marques, S.P., Creus, G.J.: Computational Viscoelasticity. Springer Science & Business Media, Berlin (2012)CrossRef Marques, S.P., Creus, G.J.: Computational Viscoelasticity. Springer Science & Business Media, Berlin (2012)CrossRef
19.
Zurück zum Zitat Renardy, M., Rogers, R.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, 13. Springer, New York (2004) Renardy, M., Rogers, R.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, 13. Springer, New York (2004)
20.
Zurück zum Zitat Rivière, B., Shaw, S., Wheeler, M., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)MathSciNetCrossRef Rivière, B., Shaw, S., Wheeler, M., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)MathSciNetCrossRef
21.
Zurück zum Zitat Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)MathSciNetCrossRef Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)MathSciNetCrossRef
22.
Zurück zum Zitat Rognes, M., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)MathSciNetCrossRef Rognes, M., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)MathSciNetCrossRef
23.
Zurück zum Zitat Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Second edition. International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, (2013) Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Second edition. International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, (2013)
24.
Zurück zum Zitat Salençon, J.: Viscoelastic Modeling for Structural Analysis. Wiley (2019)CrossRef Salençon, J.: Viscoelastic Modeling for Structural Analysis. Wiley (2019)CrossRef
25.
Zurück zum Zitat Shaw, S., Warby, M.K., Whiteman, J.R., Dawson, C., Wheeler, M.F.: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118, 211–237 (1994)MathSciNetCrossRef Shaw, S., Warby, M.K., Whiteman, J.R., Dawson, C., Wheeler, M.F.: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118, 211–237 (1994)MathSciNetCrossRef
26.
Zurück zum Zitat Shaw, S., Whiteman, J.R.: Numerical solution of linear quasistatic hereditary viscoelasticity problems. Siam J. Numer. Anal. 38, 80–97 (2000)MathSciNetCrossRef Shaw, S., Whiteman, J.R.: Numerical solution of linear quasistatic hereditary viscoelasticity problems. Siam J. Numer. Anal. 38, 80–97 (2000)MathSciNetCrossRef
27.
Zurück zum Zitat Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)MathSciNetCrossRef Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)MathSciNetCrossRef
Metadaten
Titel
A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity
verfasst von
Gabriel N. Gatica
Antonio Márquez
Salim Meddahi
Publikationsdatum
01.03.2021
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 1/2021
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00401-0

Weitere Artikel der Ausgabe 1/2021

Calcolo 1/2021 Zur Ausgabe

Premium Partner