Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2022

01-02-2022

A mixed spectral treatment for the stochastic models with random parameters

Authors: Mohamed A. El-Beltagy, Amnah Al-Juhani

Published in: Journal of Engineering Mathematics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a mixed spectral technique is suggested for the analysis of stochastic models with parameters having random variations. The proposed mixed technique considers a Volterra-like expansions for all types of randomness. Particularly, the generalized polynomial chaos (gPC) expansion is used for the random parameters and the Wiener–Hermite functionals (WHF) technique is used for the noise. The statistical properties of the functionals enables to derive a deterministic system used to evaluate the solution statistical moments. The new mixed technique is shown to be efficient compared with the classical techniques and analytical solutions could be obtained in many cases. The suggested technique allows to separate the contributions of the different random sources and hence enables to evaluate variance components which are used to estimate the sensitivity indices. The technique is applied successfully to different models with additive and multiplicative noise and compared with the classical sampling techniques. The stochastic nuclear reactor model with random parameters is analyzed with the new technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sapsis T, Lermusiaux P (2009) Dynamically orthogonal fields equations for continuous stochastic dynamical systems. Physica D 238:2347–2360MathSciNetCrossRef Sapsis T, Lermusiaux P (2009) Dynamically orthogonal fields equations for continuous stochastic dynamical systems. Physica D 238:2347–2360MathSciNetCrossRef
2.
go back to reference Lototsky, S, Rozovsky, B (2006) Stochastic differential equations: a Wiener chaos approach. Book chapter in The Shiryaev Festschrift, From Stochastic Calculus to Mathematical Finance. Springer, Berlin, pp 433–507 Lototsky, S, Rozovsky, B (2006) Stochastic differential equations: a Wiener chaos approach. Book chapter in The Shiryaev Festschrift, From Stochastic Calculus to Mathematical Finance. Springer, Berlin, pp 433–507
3.
go back to reference Holden H, Øksendal B, Ubøe J, Zhang T (2010) Stochastic Partial Differential Equations - A Modeling. Springer-Verlag, New York, White Noise Functional ApproachCrossRef Holden H, Øksendal B, Ubøe J, Zhang T (2010) Stochastic Partial Differential Equations - A Modeling. Springer-Verlag, New York, White Noise Functional ApproachCrossRef
4.
go back to reference Cortés J-C, El-Labany S, Navarro-Quiles A, Selim M, Slama H (2020) A comprehensive probabilistic analysis of approximate SIR-type epidemiological models via full randomized discrete-time Markov chain formulation with applications. Math Methods Appl Sci 43(14):8204–8222MathSciNetCrossRef Cortés J-C, El-Labany S, Navarro-Quiles A, Selim M, Slama H (2020) A comprehensive probabilistic analysis of approximate SIR-type epidemiological models via full randomized discrete-time Markov chain formulation with applications. Math Methods Appl Sci 43(14):8204–8222MathSciNetCrossRef
5.
go back to reference Ding C, Deokar R, Cui X, Li G, Cai Y, Tamma K (2019) Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties. Comput Mech 63(3):521–533MathSciNetCrossRef Ding C, Deokar R, Cui X, Li G, Cai Y, Tamma K (2019) Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties. Comput Mech 63(3):521–533MathSciNetCrossRef
6.
go back to reference Nagy S, El-Beltagy M, Wafa M (2020) Multilevel Monte Carlo by using the Halton sequence. Monte Carlo Methods Appl 26(3):193–203MathSciNetCrossRef Nagy S, El-Beltagy M, Wafa M (2020) Multilevel Monte Carlo by using the Halton sequence. Monte Carlo Methods Appl 26(3):193–203MathSciNetCrossRef
7.
go back to reference Sapsis T, Majda A (2013) Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D 258:61–76MathSciNetCrossRef Sapsis T, Majda A (2013) Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D 258:61–76MathSciNetCrossRef
8.
go back to reference Behringer K, Pineyro J, Mennig J (1990) Application of the Wiener--Hermite functional method to point reactor kinetics driven by random reactivity fluctuations. Ann Nucl Energy 17(12):643–656CrossRef Behringer K, Pineyro J, Mennig J (1990) Application of the Wiener--Hermite functional method to point reactor kinetics driven by random reactivity fluctuations. Ann Nucl Energy 17(12):643–656CrossRef
9.
go back to reference El-Beltagy M (2019) A practical comparison between the spectral techniques in solving the SDEs. Eng Comput 36(7):2369–2402 El-Beltagy M (2019) A practical comparison between the spectral techniques in solving the SDEs. Eng Comput 36(7):2369–2402
10.
go back to reference Noor A, Barnawi A, Nour R, Assiri A, El-Beltagy M (2020) Analysis of the stochastic population model with random parameters. Entropy 22(5):562MathSciNetCrossRef Noor A, Barnawi A, Nour R, Assiri A, El-Beltagy M (2020) Analysis of the stochastic population model with random parameters. Entropy 22(5):562MathSciNetCrossRef
11.
go back to reference AbdelFattah H, Al-Johani A, El-Beltagy M (2020) Analysis of the stochastic quarter-five spot problem using polynomial chaos. Molecules 25(15):3370CrossRef AbdelFattah H, Al-Johani A, El-Beltagy M (2020) Analysis of the stochastic quarter-five spot problem using polynomial chaos. Molecules 25(15):3370CrossRef
12.
go back to reference Luo W (2006) Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD thesis, California Institute of Technology, Pasadena, California Luo W (2006) Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD thesis, California Institute of Technology, Pasadena, California
13.
go back to reference Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New YorkCrossRef Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New YorkCrossRef
14.
go back to reference Xiu D, Karniadakis G (2003) Modeling uncertainty of elliptic partial differential equations via generalized polynomial chaos. J Comput Phys 187(1):137–167MathSciNetCrossRef Xiu D, Karniadakis G (2003) Modeling uncertainty of elliptic partial differential equations via generalized polynomial chaos. J Comput Phys 187(1):137–167MathSciNetCrossRef
15.
go back to reference Iooss B, Saltelli A (2017) Introduction to sensitivity analysis. In: Higdon D, Owhadi H (eds) Ghanem R. Handbook of Uncertainty Quantification. Springer, Cham Iooss B, Saltelli A (2017) Introduction to sensitivity analysis. In: Higdon D, Owhadi H (eds) Ghanem R. Handbook of Uncertainty Quantification. Springer, Cham
16.
go back to reference Cheng M, Hou T, Zhang Z (2013) A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations. J Comput Phys 242:753–776MathSciNetCrossRef Cheng M, Hou T, Zhang Z (2013) A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations. J Comput Phys 242:753–776MathSciNetCrossRef
17.
go back to reference Choi M, Sapsis T, Karniadakis G (2014) On the equivalence of dynamically orthogonal and bi-orthogonal methods theory and numerical simulations. J Comput Phys 270:1–20MathSciNetCrossRef Choi M, Sapsis T, Karniadakis G (2014) On the equivalence of dynamically orthogonal and bi-orthogonal methods theory and numerical simulations. J Comput Phys 270:1–20MathSciNetCrossRef
18.
go back to reference Babaee H, Choi M, Sapsis T, Karniadakis G (2017) A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. J Comput Phys 344:303–319MathSciNetCrossRef Babaee H, Choi M, Sapsis T, Karniadakis G (2017) A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. J Comput Phys 344:303–319MathSciNetCrossRef
19.
go back to reference Feppon F, Lermusiaux P (2018a) A geometric approach to dynamical model-order reduction. SIAM J Matrix Anal Appl 39:510–538MathSciNetCrossRef Feppon F, Lermusiaux P (2018a) A geometric approach to dynamical model-order reduction. SIAM J Matrix Anal Appl 39:510–538MathSciNetCrossRef
20.
go back to reference Feppon F, Lermusiaux P (2018b) Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport. SIAM Rev 60(3):595–625MathSciNetCrossRef Feppon F, Lermusiaux P (2018b) Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport. SIAM Rev 60(3):595–625MathSciNetCrossRef
21.
go back to reference Doi M, Imamura T (1979) An exact Gaussian solution for two-dimensional incompressible inviscid turbulent flow. J Phys Soc Jpn 46(4):1358–1359CrossRef Doi M, Imamura T (1979) An exact Gaussian solution for two-dimensional incompressible inviscid turbulent flow. J Phys Soc Jpn 46(4):1358–1359CrossRef
22.
go back to reference Meecham W (1999) Scaleless algebraic energy spectra for the incompressible Navier-Stokes equation; relation to other nonlinear problems. J Mar Syst 21(1–4):113–130CrossRef Meecham W (1999) Scaleless algebraic energy spectra for the incompressible Navier-Stokes equation; relation to other nonlinear problems. J Mar Syst 21(1–4):113–130CrossRef
23.
go back to reference El-Beltagy M, El-Tawil M (2013) Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl Math Model 37(12–13):7174–7192MathSciNetCrossRef El-Beltagy M, El-Tawil M (2013) Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl Math Model 37(12–13):7174–7192MathSciNetCrossRef
24.
go back to reference El-Beltagy M, Al-Mulla N (2014) Solution of the stochastic heat equation with nonlinear losses using Wiener--Hermite expansion. J Appl Math. Article ID 843714 El-Beltagy M, Al-Mulla N (2014) Solution of the stochastic heat equation with nonlinear losses using Wiener--Hermite expansion. J Appl Math. Article ID 843714
25.
go back to reference Alaskary S, El-Beltagy M (2020) Uncertainty quantification spectral technique for the stochastic point reactor with random parameters. Energies 13(6):1297CrossRef Alaskary S, El-Beltagy M (2020) Uncertainty quantification spectral technique for the stochastic point reactor with random parameters. Energies 13(6):1297CrossRef
26.
go back to reference Arnold L (1992) Stochastic Differential Equations: Theory and Applications. Krieger Pub Co, Malabar Arnold L (1992) Stochastic Differential Equations: Theory and Applications. Krieger Pub Co, Malabar
27.
go back to reference Bachar, M, Batzel, J, Ditlevsen, S (Ed) (2013) Stochastic biomathematical models with applications to neuronal modeling. Lecture Notes in Mathematics. Springer, Berlin Bachar, M, Batzel, J, Ditlevsen, S (Ed) (2013) Stochastic biomathematical models with applications to neuronal modeling. Lecture Notes in Mathematics. Springer, Berlin
28.
go back to reference Prieur C, Tarantola S (2017) Variance-based sensitivity analysis theory and estimation algorithms. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of Uncertainty Quantification. Springer, Cham Prieur C, Tarantola S (2017) Variance-based sensitivity analysis theory and estimation algorithms. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of Uncertainty Quantification. Springer, Cham
29.
go back to reference Sargsyan K (2015) Surrogate models for uncertainty propagation and sensitivity analysis. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, Cham Sargsyan K (2015) Surrogate models for uncertainty propagation and sensitivity analysis. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, Cham
30.
go back to reference Hayes J, Allen E (2005) Stochastic point kinetics equations in nuclear reactor dynamics. Annal Nucl Energy 32:572–587 Hayes J, Allen E (2005) Stochastic point kinetics equations in nuclear reactor dynamics. Annal Nucl Energy 32:572–587
31.
go back to reference Ray S (2012) Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor. Annal Nucl Energy 49:154–159 Ray S (2012) Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor. Annal Nucl Energy 49:154–159
32.
go back to reference Nahla A, Edress A (2016) Efficient stochastic model for the point kinetics equations. Stoch Anal Appl 34:598–609 Nahla A, Edress A (2016) Efficient stochastic model for the point kinetics equations. Stoch Anal Appl 34:598–609
33.
go back to reference Suescún-Díaz D, Oviedo-Torres Y, Girón-Cruz L (2018) Solution of the stochastic point kinetics equations using the implicit Euler-Maruyama method. Ann Nucl Energy 117:45–52 Suescún-Díaz D, Oviedo-Torres Y, Girón-Cruz L (2018) Solution of the stochastic point kinetics equations using the implicit Euler-Maruyama method. Ann Nucl Energy 117:45–52
34.
go back to reference Ayyoubzadeh S, Vosoughi N (2014) An alternative stochastic formulation for the point reactor. Ann Nucl Energy 63:691–695 Ayyoubzadeh S, Vosoughi N (2014) An alternative stochastic formulation for the point reactor. Ann Nucl Energy 63:691–695
35.
go back to reference Le Maître O, Knio O (2015) PC analysis of stochastic differential equations driven by Wiener noise. Reliab Eng Syst Saf 135:107–124CrossRef Le Maître O, Knio O (2015) PC analysis of stochastic differential equations driven by Wiener noise. Reliab Eng Syst Saf 135:107–124CrossRef
36.
go back to reference Le Maître O, Knio O (2010) Spectral methods for uncertainty quantification, with applications to computational fluid dynamics. Springer, Netherlands Le Maître O, Knio O (2010) Spectral methods for uncertainty quantification, with applications to computational fluid dynamics. Springer, Netherlands
Metadata
Title
A mixed spectral treatment for the stochastic models with random parameters
Authors
Mohamed A. El-Beltagy
Amnah Al-Juhani
Publication date
01-02-2022
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2022
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-021-10179-3

Other articles of this Issue 1/2022

Journal of Engineering Mathematics 1/2022 Go to the issue

Premium Partners