Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2013

01-07-2013

A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method

Authors: A. Fereidoon, R. Rafiee, R. Maleki Moghadam

Published in: Mechanics of Composite Materials | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A modal analysis of a carbon-nanotube-reinforced polymer (CNTRP) is performed using a 3D finite-element model. A multiscale finite-element model consisting of a single-walled carbon nanotube, a nonbonded interphase region, and the surrounding polymer is constructed. The modal analysis is executed with two types of boundary conditions to obtain the natural frequencies of the CNTRP, and the frequencies obtained are compared with the natural frequencies of a neat polymer. The results show a considerable growth in the natural frequencies of reinforced composites doped even with a small portion of carbon nanotubes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 568 (1991).CrossRef S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 568 (1991).CrossRef
2.
go back to reference M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155–172 (2010).CrossRef M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155–172 (2010).CrossRef
3.
go back to reference A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, “Vibrational analysis of single-walled carbon nanotubes using beam element,” Thin-Wall Struct., 47, 646–652 (2009).CrossRef A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, “Vibrational analysis of single-walled carbon nanotubes using beam element,” Thin-Wall Struct., 47, 646–652 (2009).CrossRef
4.
go back to reference C. Li and T.-W. Chou, “Vibrational behaviors of multiwalled-carbonnanotube- based nanomechanical resonators,” Appl. Phys. Lett., 84, No. 1, 121–123 (2004).CrossRef C. Li and T.-W. Chou, “Vibrational behaviors of multiwalled-carbonnanotube- based nanomechanical resonators,” Appl. Phys. Lett., 84, No. 1, 121–123 (2004).CrossRef
5.
go back to reference D. Sanchez-Portal, E. J. Artacho, and J. M. Soler, “Ab’initio structural, elastic, and vibrational properties of carbon nanotubes,” Phys. Rev. B, 59, No. 19, 12678–12688 (1999).CrossRef D. Sanchez-Portal, E. J. Artacho, and J. M. Soler, “Ab’initio structural, elastic, and vibrational properties of carbon nanotubes,” Phys. Rev. B, 59, No. 19, 12678–12688 (1999).CrossRef
6.
go back to reference C. Q. Ru, “Intrinsic vibration of multiwalled carbon nanotubes,” Int. J. Nonlinear Sci. Numer. Simul., 3, Nos. 3–4, 735 (2002). C. Q. Ru, “Intrinsic vibration of multiwalled carbon nanotubes,” Int. J. Nonlinear Sci. Numer. Simul., 3, Nos. 3–4, 735 (2002).
7.
go back to reference Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258–266 (2005).CrossRef Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258–266 (2005).CrossRef
8.
go back to reference G. Dereli and C. Ozdogan, “Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain,” Phys. Rev. B, 67, No. 3, 035416 (2003).CrossRef G. Dereli and C. Ozdogan, “Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain,” Phys. Rev. B, 67, No. 3, 035416 (2003).CrossRef
9.
go back to reference G. D. Mahan, “Oscillations of a thin hollow cylinder: carbon nanotubes,” Phys. Rev. B, ; 65, 235402 (2002). G. D. Mahan, “Oscillations of a thin hollow cylinder: carbon nanotubes,” Phys. Rev. B, ; 65, 235402 (2002).
10.
go back to reference C. Li and T.-W. Chou, “Single-walled nanotubes as ultrahigh frequency nanomechanical resonators,” Phys. Rev. B, 68, 073405 (2003).CrossRef C. Li and T.-W. Chou, “Single-walled nanotubes as ultrahigh frequency nanomechanical resonators,” Phys. Rev. B, 68, 073405 (2003).CrossRef
11.
go back to reference R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, “Vibrations of carbon nanotubes and their composites: A review,” Compos. Sci. Technol., 67, 1–28 (2007).CrossRef R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, “Vibrations of carbon nanotubes and their composites: A review,” Compos. Sci. Technol., 67, 1–28 (2007).CrossRef
12.
go back to reference A. F. Ávila, L. V. Donadon, H. V. Duarte, “Modal analysis on nanoclay epoxy-based fiber-glass laminates,” Compos. Struct., 83, No. 3, 324–333 (2008).CrossRef A. F. Ávila, L. V. Donadon, H. V. Duarte, “Modal analysis on nanoclay epoxy-based fiber-glass laminates,” Compos. Struct., 83, No. 3, 324–333 (2008).CrossRef
13.
go back to reference G. Formica, W. Lacarbonara, and R. Alessi, “Vibrations of carbon nanotube-reinforced composites,” J. Sound Vibrat., 329, 1875–1889 (2010).CrossRef G. Formica, W. Lacarbonara, and R. Alessi, “Vibrations of carbon nanotube-reinforced composites,” J. Sound Vibrat., 329, 1875–1889 (2010).CrossRef
14.
go back to reference M. M. Shokrieh and R. Rafiee, “Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber,” Mech. Res. Commun., 37, 235–240, (2010).CrossRef M. M. Shokrieh and R. Rafiee, “Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber,” Mech. Res. Commun., 37, 235–240, (2010).CrossRef
15.
go back to reference C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).CrossRef C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).CrossRef
16.
go back to reference K. I. Tserpes and P. Papanikos, “Finite-element modeling of single-walled carbon nanotubes,” Compos. Part B, Eng., 36, 468–477 (2005). K. I. Tserpes and P. Papanikos, “Finite-element modeling of single-walled carbon nanotubes,” Compos. Part B, Eng., 36, 468–477 (2005).
17.
go back to reference A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., 43, 6832–6854 (2006).CrossRef A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., 43, 6832–6854 (2006).CrossRef
18.
go back to reference C. W. S. To, “Bending and shear moduli of single-walled carbon nanotubes,” Finite Element Anal. Des., 42, 404–413 (2006).CrossRef C. W. S. To, “Bending and shear moduli of single-walled carbon nanotubes,” Finite Element Anal. Des., 42, 404–413 (2006).CrossRef
20.
go back to reference ANSYS Inc. Theory manual. SAS IP Inc. 2009. ANSYS Inc. Theory manual. SAS IP Inc. 2009.
21.
go back to reference S. B. Sinnott, “Chemical functionalization of carbon nanotubes,” J. Nanosci. Nanotechnol., 2, 113–123 (2002).CrossRef S. B. Sinnott, “Chemical functionalization of carbon nanotubes,” J. Nanosci. Nanotechnol., 2, 113–123 (2002).CrossRef
22.
go back to reference J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem., 12, 1952–1958 (2002).CrossRef J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem., 12, 1952–1958 (2002).CrossRef
23.
go back to reference S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” J. Phys. Chem., B, 106, 3046–3048 (2002).CrossRef S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” J. Phys. Chem., B, 106, 3046–3048 (2002).CrossRef
24.
go back to reference M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, “Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites,” Chem. Mater., 18, 906–913 (2006).CrossRef M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, “Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites,” Chem. Mater., 18, 906–913 (2006).CrossRef
25.
go back to reference F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” J. Polym. Sci. Part B. Polym. Phys., 45, 490–501 (2007).CrossRef F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” J. Polym. Sci. Part B. Polym. Phys., 45, 490–501 (2007).CrossRef
26.
go back to reference C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, No. 20, 3873–3875 (2002).CrossRef C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, No. 20, 3873–3875 (2002).CrossRef
27.
go back to reference A. H. Barber, S. R. Cohen, H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., 82, No. 23, 4140–4142 (2003).CrossRef A. H. Barber, S. R. Cohen, H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., 82, No. 23, 4140–4142 (2003).CrossRef
28.
go back to reference V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube– polymer composites,” J. Mater. Res., 15, No. 12, 2770–2779 (2000).CrossRef V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube– polymer composites,” J. Mater. Res., 15, No. 12, 2770–2779 (2000).CrossRef
30.
go back to reference H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., 32, 481–489 (2005).CrossRef H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., 32, 481–489 (2005).CrossRef
31.
go back to reference M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Multiscale modeling of mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Compos. Struct., 93, 2250–2259 (2011).CrossRef M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Multiscale modeling of mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Compos. Struct., 93, 2250–2259 (2011).CrossRef
32.
go back to reference A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, „Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Technol., 64, 2283–2289 (2004). A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, „Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Technol., 64, 2283–2289 (2004).
33.
go back to reference F. Karimzadeh, S. Ziaei-Rad, and S. Adibi, “Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite,” Metall. Mater. Trans. B, 38, 695–705 (2007).CrossRef F. Karimzadeh, S. Ziaei-Rad, and S. Adibi, “Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite,” Metall. Mater. Trans. B, 38, 695–705 (2007).CrossRef
34.
go back to reference C. Li and T. W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites,” J. of Nanosci. Nanotechnol., 3, 423–430 (2003).CrossRef C. Li and T. W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites,” J. of Nanosci. Nanotechnol., 3, 423–430 (2003).CrossRef
35.
go back to reference C. Li and T. W. Chou, “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites,” Compos. Sci. Technol., 66, 2409–2414 (2006).CrossRef C. Li and T. W. Chou, “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites,” Compos. Sci. Technol., 66, 2409–2414 (2006).CrossRef
36.
go back to reference S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, “Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method,” Theor. Appl. Fract. Mech., 158–164 (2009). S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, “Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method,” Theor. Appl. Fract. Mech., 158–164 (2009).
37.
go back to reference G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B, 41, No. 8, 594–601 (2010).CrossRef G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B, 41, No. 8, 594–601 (2010).CrossRef
38.
go back to reference J. M. Wernik and S. A. Meguid, “Multiscale modeling of the nonlinear response of nano-reinforced polymers,” Acta Mech., 217, 1–16 (2011).CrossRef J. M. Wernik and S. A. Meguid, “Multiscale modeling of the nonlinear response of nano-reinforced polymers,” Acta Mech., 217, 1–16 (2011).CrossRef
39.
go back to reference L. Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. C. Hwang, and B. Liu, “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” J. Mech. Phys. Solids, 54, 2436–2452 (2006).CrossRef L. Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. C. Hwang, and B. Liu, “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” J. Mech. Phys. Solids, 54, 2436–2452 (2006).CrossRef
40.
go back to reference E. Madenci and I. Guven, “The finite element method and applications in engineering using ANSYS,” Springer, Library of Congress Control Number: 2005052017 E. Madenci and I. Guven, “The finite element method and applications in engineering using ANSYS,” Springer, Library of Congress Control Number: 2005052017
Metadata
Title
A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method
Authors
A. Fereidoon
R. Rafiee
R. Maleki Moghadam
Publication date
01-07-2013
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2013
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-013-9350-6

Other articles of this Issue 3/2013

Mechanics of Composite Materials 3/2013 Go to the issue

Premium Partners