Skip to main content
Top
Published in: Cognitive Computation 3/2017

28-04-2017

A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir Computing

Authors: Andrew Katumba, Matthias Freiberger, Peter Bienstman, Joni Dambre

Published in: Cognitive Computation | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Photonic reservoir computing has evolved into a viable contender for the next generation of analog computing platforms as industry looks beyond standard transistor-based computing architectures. Integrated photonic reservoir computing, particularly on the silicon-on-insulator platform, presents a CMOS-compatible, wide bandwidth, parallel platform for implementation of optical reservoirs. A number of demonstrations of the applicability of this platform for processing optical telecommunication signals have been made in the recent past. In this work, we take it a stage further by performing an architectural search for designs that yield the best performance while maintaining power efficiency. We present numerical simulations for an optical circuit model of a 16-node integrated photonic reservoir with the input signal injected in combinations of 2, 4, and 8 nodes, or into all 16 nodes. The reservoir is composed of a network of passive photonic integrated circuit components with the required nonlinearity introduced at the readout point with a photodetector. The resulting error performance on the temporal XOR task for these multiple input cases is compared with that of the typical case of input to a single node. We additionally introduce for the first time in our simulations a realistic model of a photodetector. Based on this, we carry out a full power-level exploration for each of the above input strategies. Multiple-input reservoirs achieve better performance and power efficiency than single-input reservoirs. For the same input power level, multiple-input reservoirs yield lower error rates. The best multiple-input reservoir designs can achieve the error rates of single-input ones with at least two orders of magnitude less total input power. These results can be generally attributed to the increase in richness of the reservoir dynamics and the fact that signals stay longer within the reservoir. If we account for all loss and noise contributions, the minimum input power for error-free performance for the optimal design is found to be in the ≈1 mW range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;2560:2531–2560.CrossRef Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;2560:2531–2560.CrossRef
2.
go back to reference Jaeger H, Haas H, Vol. 304. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. New York: Science; 2004, pp. 78–80. Jaeger H, Haas H, Vol. 304. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. New York: Science; 2004, pp. 78–80.
3.
go back to reference Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw 2007;4;20(3):391–403.CrossRef Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw 2007;4;20(3):391–403.CrossRef
4.
go back to reference Hauser H, Ijspeert A, Füchslin R, Pfeifer R, Maass W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 2011;12;105(2011):355–370.CrossRef Hauser H, Ijspeert A, Füchslin R, Pfeifer R, Maass W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 2011;12;105(2011):355–370.CrossRef
5.
go back to reference Sillin HO, Aguilera R, Shieh HH, Avizienis AV, Aono M, Stieg AZ, et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 2013;24:384004.CrossRefPubMed Sillin HO, Aguilera R, Shieh HH, Avizienis AV, Aono M, Stieg AZ, et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 2013;24:384004.CrossRefPubMed
6.
go back to reference Kulkarni MS, Teuscher C. Memristor-based reservoir computing. In: Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures - NANOARCH ’12. New York: ACM Press; 2012. p. 226–232. Kulkarni MS, Teuscher C. Memristor-based reservoir computing. In: Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures - NANOARCH ’12. New York: ACM Press; 2012. p. 226–232.
7.
go back to reference Vandoorne K. 2011. Photonic reservoir computing with a network of coupled semiconductor optical amplifiers. Vandoorne K. 2011. Photonic reservoir computing with a network of coupled semiconductor optical amplifiers.
8.
go back to reference Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, et al. Optoelectronic reservoir computing. Sci Rep 2012;2;2:287. Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, et al. Optoelectronic reservoir computing. Sci Rep 2012;2;2:287.
9.
go back to reference Vinckier Q, Duport F, Smerieri A, Vandoorne K, Bienstman P, Haelterman M, et al. High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015;2(5):438–446.CrossRef Vinckier Q, Duport F, Smerieri A, Vandoorne K, Bienstman P, Haelterman M, et al. High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015;2(5):438–446.CrossRef
10.
go back to reference Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;1;4:1364.CrossRef Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;1;4:1364.CrossRef
11.
go back to reference Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Massar S, Dambre J, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011;9;2:468. Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Massar S, Dambre J, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011;9;2:468.
12.
go back to reference Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM, Pesquera L, et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 2012; 1;20(3):3241.CrossRef Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM, Pesquera L, et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 2012; 1;20(3):3241.CrossRef
13.
go back to reference Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express 2012;9;20(20):22783.CrossRef Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express 2012;9;20(20):22783.CrossRef
14.
go back to reference Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar JL, Haelterman M, et al. All-optical reservoir computer based on saturation of absorption. Opt Express 2014;5;22(9):10868.CrossRef Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar JL, Haelterman M, et al. All-optical reservoir computer based on saturation of absorption. Opt Express 2014;5;22(9):10868.CrossRef
15.
go back to reference Soriano MC, Ortín S, Brunner D, Larger L, Mirasso CR, Fischer I, et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt Express 2013;1;21(1):12.CrossRef Soriano MC, Ortín S, Brunner D, Larger L, Mirasso CR, Fischer I, et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt Express 2013;1;21(1):12.CrossRef
16.
go back to reference Nguimdo RM, Verschaffelt G, Danckaert J, Van der Sande G. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt Express 2014;4;22(7):8672. Nguimdo RM, Verschaffelt G, Danckaert J, Van der Sande G. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt Express 2014;4;22(7):8672.
17.
go back to reference Hicke K, Escalona-Morán M., Brunner D, Soriano MC, Fischer I, Mirasso CR. Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J Sel Top Quantum Electron 2013;7;19(4):1501610–1501610.CrossRef Hicke K, Escalona-Morán M., Brunner D, Soriano MC, Fischer I, Mirasso CR. Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J Sel Top Quantum Electron 2013;7;19(4):1501610–1501610.CrossRef
18.
go back to reference Vandoorne K, Dambre J, Verstraeten D, Schrauwen B, Bienstman P. Parallel reservoir computing using optical amplifiers. IEEE Trans Neural Netw 2011;9;22(9):1469–81.CrossRef Vandoorne K, Dambre J, Verstraeten D, Schrauwen B, Bienstman P. Parallel reservoir computing using optical amplifiers. IEEE Trans Neural Netw 2011;9;22(9):1469–81.CrossRef
19.
go back to reference Mesaritakis C, Papataxiarhis V, Syvridis D. 2013. Micro ring resonators as building blocks for an all-optical highspeed reservoir-computing bit-pattern-recognition system. JOSA B;(October). Mesaritakis C, Papataxiarhis V, Syvridis D. 2013. Micro ring resonators as building blocks for an all-optical highspeed reservoir-computing bit-pattern-recognition system. JOSA B;(October).
20.
go back to reference Fiers MAA, Van Vaerenbergh T, Wyffels F, Verstraeten D, Schrauwen B, Dambre J, et al. Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns. IEEE Trans Neural Netw Learn Syst 2014;25(2):344–355. Fiers MAA, Van Vaerenbergh T, Wyffels F, Verstraeten D, Schrauwen B, Dambre J, et al. Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns. IEEE Trans Neural Netw Learn Syst 2014;25(2):344–355.
21.
go back to reference Zhang H, Feng X, Li B, Wang Y, Cui K, Liu F, et al. Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt Express 2014;12;22(25):31356–31370.CrossRef Zhang H, Feng X, Li B, Wang Y, Cui K, Liu F, et al. Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt Express 2014;12;22(25):31356–31370.CrossRef
22.
go back to reference Mesaritakis C, Kapsalis A, Syvridis D. 2015. All-optical reservoir computing system based on InGaAsP ring resonators for high-speed identification and optical routing in optical networks.9370:1?7. Mesaritakis C, Kapsalis A, Syvridis D. 2015. All-optical reservoir computing system based on InGaAsP ring resonators for high-speed identification and optical routing in optical networks.9370:1?7.
23.
go back to reference Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 2014;1;5:3541. Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 2014;1;5:3541.
24.
go back to reference Katumba A, Bienstman P, Dambre J. Photonic reservoir computing approaches to nanoscale computation. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication. NANOCOM’ 15. New York: ACM; 2015. p. 23:1–23:2. Katumba A, Bienstman P, Dambre J. Photonic reservoir computing approaches to nanoscale computation. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication. NANOCOM’ 15. New York: ACM; 2015. p. 23:1–23:2.
25.
go back to reference Fiers M, Vaerenbergh TV, Caluwaerts K, Ginste DV, Schrauwen B, Dambre J, et al. Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach. J Opt Soc Am B 2012;5;29(5):896–900.CrossRef Fiers M, Vaerenbergh TV, Caluwaerts K, Ginste DV, Schrauwen B, Dambre J, et al. Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach. J Opt Soc Am B 2012;5;29(5):896–900.CrossRef
26.
go back to reference 2012. Ultrafast InGaAs PIN photodetector UPD-15-IR2-FC. ALPHALAS GmbH. 2012. Ultrafast InGaAs PIN photodetector UPD-15-IR2-FC. ALPHALAS GmbH.
27.
go back to reference Theodoridis S, Koutroumbas K. 2009. 04 Nonlinear classifiers. Pattern recognition (Fourth Edition). pp. 151–260. Theodoridis S, Koutroumbas K. 2009. 04 Nonlinear classifiers. Pattern recognition (Fourth Edition). pp. 151–260.
28.
go back to reference Verstraeten D, Schrauwen B, Dieleman S, Brakel P, Buteneers P, Pecevski D. Oger: modular learning architectures for large-scale sequential processing. J Mach Learn Res. Verstraeten D, Schrauwen B, Dieleman S, Brakel P, Buteneers P, Pecevski D. Oger: modular learning architectures for large-scale sequential processing. J Mach Learn Res.
29.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Rese 2011;12:2825–2830. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Rese 2011;12:2825–2830.
30.
go back to reference Jeruchim M. Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE J Sel Areas Commun 1984;1;2(1):153–170.CrossRef Jeruchim M. Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE J Sel Areas Commun 1984;1;2(1):153–170.CrossRef
Metadata
Title
A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir Computing
Authors
Andrew Katumba
Matthias Freiberger
Peter Bienstman
Joni Dambre
Publication date
28-04-2017
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2017
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9465-5

Other articles of this Issue 3/2017

Cognitive Computation 3/2017 Go to the issue

Premium Partner