Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2015

01-06-2015

A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans

Authors: M. Grabowska, T. I. Toth, C. Smarandache-Wellmann, S. Daun-Gruhn

Published in: Journal of Computational Neuroscience | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inter-segmental coordination is crucial for the locomotion of animals. Arthropods show high variability of leg numbers, from 6 in insects up to 750 legs in millipedes. Despite this fact, the anatomical and functional organization of their nervous systems show basic similarities. The main similarities are the segmental organization, and the way the function of the segmental units is coordinated. We set out to construct a model that could describe locomotion (walking) in animals with more than 6 legs, as well as in 6-legged animals (insects). To this end, we extended a network model by Daun-Gruhn and Tóth (Journal of Computational Neuroscience, doi:10.​1007/​s10827-010-0300-1, 2011). This model describes inter-segmental coordination of the ipsilateral legs in the stick insect during walking. Including an additional segment (local network) into the original model, we could simulate coordination patterns that occur in animals walking on eight legs (e.g., crayfish). We could improve the model by modifying its original cyclic connection topology. In all model variants, the phase relations between the afferent segmental excitatory sensory signals and the oscillatory activity of the segmental networks played a crucial role. Our results stress the importance of this sensory input on the generation of different stable coordination patterns. The simulations confirmed that using the modified connection topology, the flexibility of the model behaviour increased, meaning that changing a single phase parameter, i.e., gating properties of just one afferent sensory signal was sufficient to reproduce all coordination patterns seen in the experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akay, T., Bässler, U., Gerharz, P., Büschges, A. (2001). The Role of Sensory Signals From the Insect Coxa-Trochanteral Joint in Controlling Motor Activity of the Femur-Tibia Joint. The American Physiological Society Akay, T., Bässler, U., Gerharz, P., Büschges, A. (2001). The Role of Sensory Signals From the Insect Coxa-Trochanteral Joint in Controlling Motor Activity of the Femur-Tibia Joint. The American Physiological Society
go back to reference Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping. Journal of Neurophysiology, 96, 3532–3537.CrossRef Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping. Journal of Neurophysiology, 96, 3532–3537.CrossRef
go back to reference Akay, T., Ludwar, B., Goritz, M. L., Schmitz, J., & Büschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Journal of Neuroscience, 27, 3285–3294.CrossRefPubMed Akay, T., Ludwar, B., Goritz, M. L., Schmitz, J., & Büschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Journal of Neuroscience, 27, 3285–3294.CrossRefPubMed
go back to reference Barnes, W. J. P. (1975). Leg coordination during walking in the crab, Uca pugnax. Journal of Comparative Physiology, 96, 237–256.CrossRef Barnes, W. J. P. (1975). Leg coordination during walking in the crab, Uca pugnax. Journal of Comparative Physiology, 96, 237–256.CrossRef
go back to reference Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements. Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–68.CrossRefPubMed Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements. Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–68.CrossRefPubMed
go back to reference Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: Influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.CrossRefPubMed Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: Influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.CrossRefPubMed
go back to reference Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.CrossRefPubMed Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.CrossRefPubMed
go back to reference Bowerman, R. F. (1977). The control of arthropod walking. Comparative Biochemical and Phvsiology, 56A, 231–247.CrossRef Bowerman, R. F. (1977). The control of arthropod walking. Comparative Biochemical and Phvsiology, 56A, 231–247.CrossRef
go back to reference Bucher, D., Akay, T., DiCaprio, R. A., & Büschges, A. (2003). Interjoint coordination in the stick insect leg-control system: the role of positional signaling. Journal of Neurophysiology, 89, 1245–1255.CrossRefPubMed Bucher, D., Akay, T., DiCaprio, R. A., & Büschges, A. (2003). Interjoint coordination in the stick insect leg-control system: the role of positional signaling. Journal of Neurophysiology, 89, 1245–1255.CrossRefPubMed
go back to reference Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.CrossRefPubMed Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.CrossRefPubMed
go back to reference Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. Journal of Neurophysiology, 93, 1127–1135.CrossRefPubMed Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. Journal of Neurophysiology, 93, 1127–1135.CrossRefPubMed
go back to reference Büschges, A., Kudwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to the rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.CrossRefPubMed Büschges, A., Kudwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to the rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.CrossRefPubMed
go back to reference Cattaert, D., & Le Ray, D. (2001). Adaptive motor control in crayfish. Progress in Neurobiology, 63, 199–240.CrossRefPubMed Cattaert, D., & Le Ray, D. (2001). Adaptive motor control in crayfish. Progress in Neurobiology, 63, 199–240.CrossRefPubMed
go back to reference Cattaert, D., El Manira, A., Marchand, A., & Clarac, F. (1990). Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation. Neuroscience Letters, 108, 81–87.CrossRefPubMed Cattaert, D., El Manira, A., Marchand, A., & Clarac, F. (1990). Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation. Neuroscience Letters, 108, 81–87.CrossRefPubMed
go back to reference Chasserat, C., & Clarac, F. (1983). Quantitative analysis of walking in a decapod crustacean, the rock lobster Jasus lalandii. II. Spatial and temporal regulation of stepping in driven walking. Journal of Experimental Biology, 107, 219–243. Chasserat, C., & Clarac, F. (1983). Quantitative analysis of walking in a decapod crustacean, the rock lobster Jasus lalandii. II. Spatial and temporal regulation of stepping in driven walking. Journal of Experimental Biology, 107, 219–243.
go back to reference Chrachri, A., & Clarac, F. (1989). Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii. Journal of Neurophysiology, 62, 1237–1250.PubMed Chrachri, A., & Clarac, F. (1989). Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii. Journal of Neurophysiology, 62, 1237–1250.PubMed
go back to reference Clarac, F. (1982). Decapod crustacean leg coordination during walking. In C. F. Herreid & C. R. Fourtner (Eds.), Locomotion and energetics in arthropods (pp. 31–71). New York: Plenum Press. Clarac, F. (1982). Decapod crustacean leg coordination during walking. In C. F. Herreid & C. R. Fourtner (Eds.), Locomotion and energetics in arthropods (pp. 31–71). New York: Plenum Press.
go back to reference Clarac, F., & Barnes, W. J. P. (1985). Peripheral influences on the coordination of the legs during walking in decapod crustaceans. In coordination of motor behaviour. In Soc. exp. Biol. Seminar Series 24 (pp. 249–269). Cambridge: Cambridge University Press. Clarac, F., & Barnes, W. J. P. (1985). Peripheral influences on the coordination of the legs during walking in decapod crustaceans. In coordination of motor behaviour. In Soc. exp. Biol. Seminar Series 24 (pp. 249–269). Cambridge: Cambridge University Press.
go back to reference Clarac, F., Wales, W., & Laverack, M. S. (1971). Stress detection at the autotomy plane in the decapod crustacea II. The function of receptors associated with the cuticle of the basi-ischiopodite. Zeitschrift für vergleichende Physiologie, 73, 383–407.CrossRef Clarac, F., Wales, W., & Laverack, M. S. (1971). Stress detection at the autotomy plane in the decapod crustacea II. The function of receptors associated with the cuticle of the basi-ischiopodite. Zeitschrift für vergleichende Physiologie, 73, 383–407.CrossRef
go back to reference Clarac, F., Cattaert, D., & Le Ray, D. (2000). Central control components of a ‘simple’ stretch reflex. Trends in Neuroscience, 23, 199–208.CrossRef Clarac, F., Cattaert, D., & Le Ray, D. (2000). Central control components of a ‘simple’ stretch reflex. Trends in Neuroscience, 23, 199–208.CrossRef
go back to reference Collins, J., & Richmond, S. (1994). Hard–wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71, 375–385.CrossRef Collins, J., & Richmond, S. (1994). Hard–wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71, 375–385.CrossRef
go back to reference Collins, J., & Stewart, I. (1992). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68, 287–298.CrossRef Collins, J., & Stewart, I. (1992). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68, 287–298.CrossRef
go back to reference Cruse, H. (1985). Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355. Cruse, H. (1985). Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355.
go back to reference Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. TINS, 1(13), 15–21. Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. TINS, 1(13), 15–21.
go back to reference Cruse, H., & Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369. Cruse, H., & Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369.
go back to reference Cruse, H., Dürr, V., Schilling, M., & Schmitz, J. (2009). Principles of insect locomotion. In P. Arena & L. Patanè (Eds.), Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots (pp. 1–57). Berlin: Springer. Cruse, H., Dürr, V., Schilling, M., & Schmitz, J. (2009). Principles of insect locomotion. In P. Arena & L. Patanè (Eds.), Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots (pp. 1–57). Berlin: Springer.
go back to reference Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a halfcenter oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.CrossRefPubMedCentralPubMed Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a halfcenter oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.CrossRefPubMedCentralPubMed
go back to reference Daun–Gruhn, S. (2011). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0254-3. Daun–Gruhn, S. (2011). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience. doi:10.​1007/​s10827-010-0254-3.
go back to reference Daun-Gruhn, S., & Toth, T. I. (2011). An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0300-1. Daun-Gruhn, S., & Toth, T. I. (2011). An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience. doi:10.​1007/​s10827-010-0300-1.
go back to reference Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33, 237–250.CrossRefPubMed Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33, 237–250.CrossRefPubMed
go back to reference Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33, 287–300.CrossRefPubMed Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33, 287–300.CrossRefPubMed
go back to reference Elson, R. (1996). Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-Leg nerves and possible homologies with insects. Journal of Comparative Neurology, 365, 1–17.CrossRefPubMed Elson, R. (1996). Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-Leg nerves and possible homologies with insects. Journal of Comparative Neurology, 365, 1–17.CrossRefPubMed
go back to reference Elson, R. C., Sillar, K. T., & Bush, B. M. H. (1992). Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. Journal of Neurophysiology, 67, 530–546.PubMed Elson, R. C., Sillar, K. T., & Bush, B. M. H. (1992). Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. Journal of Neurophysiology, 67, 530–546.PubMed
go back to reference Grabowska, M. J., Godlewska, E., Schmidt, J., & Daun-Gruhn, S. (2012). Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects. The Journal of Experimental Biology, 215, 4255–4266.CrossRefPubMed Grabowska, M. J., Godlewska, E., Schmidt, J., & Daun-Gruhn, S. (2012). Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects. The Journal of Experimental Biology, 215, 4255–4266.CrossRefPubMed
go back to reference Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.CrossRef Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.CrossRef
go back to reference Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E. N. (2005). Microcircuits in action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533.CrossRefPubMed Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E. N. (2005). Microcircuits in action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533.CrossRefPubMed
go back to reference Hess, D., & Büschges, A. (1999). Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Journal of Neurophysiologly, 81, 1856–1865. Hess, D., & Büschges, A. (1999). Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Journal of Neurophysiologly, 81, 1856–1865.
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.CrossRefPubMedCentralPubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.CrossRefPubMedCentralPubMed
go back to reference Jamom, M., & Clarac, F. (1995). Locomotor patterns in freely moving crayfish (Procambarus clarkii). The Journal of Experimental Biology, 198, 683–700. Jamom, M., & Clarac, F. (1995). Locomotor patterns in freely moving crayfish (Procambarus clarkii). The Journal of Experimental Biology, 198, 683–700.
go back to reference Klärner, D., & Barnes, W. J. P. (1986). The cuticular stress detector (CSD2) of the crayfish. II. Activity during walking and influences on the leg coordination. The Journal of Experimental Biology, 122, 161–175. Klärner, D., & Barnes, W. J. P. (1986). The cuticular stress detector (CSD2) of the crayfish. II. Activity during walking and influences on the leg coordination. The Journal of Experimental Biology, 122, 161–175.
go back to reference Klärner, D., & Barth, F. G. (1986). The cuticular stress detector (CSD2) of the crayfish I physiological properties. The Journal of Experimental Biology, 122, 149–159. Klärner, D., & Barth, F. G. (1986). The cuticular stress detector (CSD2) of the crayfish I physiological properties. The Journal of Experimental Biology, 122, 149–159.
go back to reference Kopell, N., Ermentrout, G. B., & Williams, T. L. (1991). On chains of oscillators forced at one end. SIAM Journal of Applied Mathematics, 51, 1397–1417.CrossRef Kopell, N., Ermentrout, G. B., & Williams, T. L. (1991). On chains of oscillators forced at one end. SIAM Journal of Applied Mathematics, 51, 1397–1417.CrossRef
go back to reference Libersat, F., Zill, S., & Clarac, F. (1987). Single-unit responses and reflex effects of force sensitive mechanoreceptors of the dactyl of the crab. Journal of Neurophysiology, 57, 1601–1617.PubMed Libersat, F., Zill, S., & Clarac, F. (1987). Single-unit responses and reflex effects of force sensitive mechanoreceptors of the dactyl of the crab. Journal of Neurophysiology, 57, 1601–1617.PubMed
go back to reference Ludwar, B. C., Göritz, M. L., & Schmidt, J. (2005). Intersegmental coordination of walking movements in stick insects. Journal of Neurophysiology, 93, 1255–1265.CrossRefPubMed Ludwar, B. C., Göritz, M. L., & Schmidt, J. (2005). Intersegmental coordination of walking movements in stick insects. Journal of Neurophysiology, 93, 1255–1265.CrossRefPubMed
go back to reference MacMillan, D. L. (1975). A physiological analysis of walking in the American Lobster (Homarus americanus). Philosophical Transactions of the Royal Society B, 270, 1–59.CrossRef MacMillan, D. L. (1975). A physiological analysis of walking in the American Lobster (Homarus americanus). Philosophical Transactions of the Royal Society B, 270, 1–59.CrossRef
go back to reference Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.CrossRefPubMed Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.CrossRefPubMed
go back to reference Müller, U., & Cruse, H. (1991). The contralateral coordination of walking legs in the crayfish Astacus leptodactylus. I. Experimental results. Biologicval Cybernetics, 64, 429–436.CrossRef Müller, U., & Cruse, H. (1991). The contralateral coordination of walking legs in the crayfish Astacus leptodactylus. I. Experimental results. Biologicval Cybernetics, 64, 429–436.CrossRef
go back to reference Parrack, D.W. (1964). Stepping sequences in the crayfish. PhD. Thesis, University of Illinois. Parrack, D.W. (1964). Stepping sequences in the crayfish. PhD. Thesis, University of Illinois.
go back to reference Pearson, K. G. (2000). Neural adaptation in the generation of rhythmic behavior. Annual Reviews in Physiology, 62, 723–753.CrossRef Pearson, K. G. (2000). Neural adaptation in the generation of rhythmic behavior. Annual Reviews in Physiology, 62, 723–753.CrossRef
go back to reference Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17, 629–636.CrossRefPubMed Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17, 629–636.CrossRefPubMed
go back to reference Ross, R. B., and Belanger, J. H. (2013). Passive Mechanical Properties of Crustacean Walking Legs. Poster, Sfn, Annual meeting, San Diego Ross, R. B., and Belanger, J. H. (2013). Passive Mechanical Properties of Crustacean Walking Legs. Poster, Sfn, Annual meeting, San Diego
go back to reference Sillar, K. T., & Skorupski, P. (1986). Central input to primary afferent neurons in the crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. Journal of Neurophysiology, 55(4), 678–688.PubMed Sillar, K. T., & Skorupski, P. (1986). Central input to primary afferent neurons in the crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. Journal of Neurophysiology, 55(4), 678–688.PubMed
go back to reference Sillar, K. T., Skorupski, P., Elson, R. C., & Bush, B. M. H. (1986). Two identified afferent neurones entrain a central locomotor rhythm generator. Nature, 323, 440–443.CrossRef Sillar, K. T., Skorupski, P., Elson, R. C., & Bush, B. M. H. (1986). Two identified afferent neurones entrain a central locomotor rhythm generator. Nature, 323, 440–443.CrossRef
go back to reference Sillar, I. K., Clarac, F., & Busch, B. M. H. (1987). Intersegmental coordination of central neural oscillators for rhythmic movements of the walking legs in crayfish, Pacifastacus leniusculus. Journal of Experimental Biology, 131, 245–264. Sillar, I. K., Clarac, F., & Busch, B. M. H. (1987). Intersegmental coordination of central neural oscillators for rhythmic movements of the walking legs in crayfish, Pacifastacus leniusculus. Journal of Experimental Biology, 131, 245–264.
go back to reference Skinner, K. (1985). The structure of the fourth abdominal ganglion of the crayfish, Procarnbnrus clarhzi (Girard). I. Tracts in the ganglionic core. Journal of Comparative Neurology, 234, 168–181.CrossRefPubMed Skinner, K. (1985). The structure of the fourth abdominal ganglion of the crayfish, Procarnbnrus clarhzi (Girard). I. Tracts in the ganglionic core. Journal of Comparative Neurology, 234, 168–181.CrossRefPubMed
go back to reference Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.CrossRefPubMed Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.CrossRefPubMed
go back to reference Toth, T.I., Grabowska, M., Rosjat, N., Hellekes, K., Borgmann, A., Daun-Gruhn, S. (2015). Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves. Biological Cybernetics. doi:10.1007/s00422-015-0647-5 Toth, T.I., Grabowska, M., Rosjat, N., Hellekes, K., Borgmann, A., Daun-Gruhn, S. (2015). Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves. Biological Cybernetics. doi:10.​1007/​s00422-015-0647-5
go back to reference Von Twickel, A., Büschges, A., & Parsemann, F. (2011). Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biological Cybernetics, 104, 95–119.CrossRef Von Twickel, A., Büschges, A., & Parsemann, F. (2011). Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biological Cybernetics, 104, 95–119.CrossRef
go back to reference Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.CrossRefPubMed Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.CrossRefPubMed
go back to reference Wilson, D. M. (1966). Insect walking. Annual Review of Entomol, 11, 103–122.CrossRef Wilson, D. M. (1966). Insect walking. Annual Review of Entomol, 11, 103–122.CrossRef
go back to reference Zill, S., Schmitz, J., & Büschges, A. (2004). Load sensing and control of posture and locomotion. Arthropod Structure Development, 33, 273–286.CrossRefPubMed Zill, S., Schmitz, J., & Büschges, A. (2004). Load sensing and control of posture and locomotion. Arthropod Structure Development, 33, 273–286.CrossRefPubMed
go back to reference Zill, S. N., Keller, B. R., & Duke, E. R. (2009). Sensory signals of unloading in One Leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology, 101, 2297–2304.CrossRefPubMed Zill, S. N., Keller, B. R., & Duke, E. R. (2009). Sensory signals of unloading in One Leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology, 101, 2297–2304.CrossRefPubMed
Metadata
Title
A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans
Authors
M. Grabowska
T. I. Toth
C. Smarandache-Wellmann
S. Daun-Gruhn
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2015
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-015-0559-3

Other articles of this Issue 3/2015

Journal of Computational Neuroscience 3/2015 Go to the issue

Premium Partner