Skip to main content
Top
Published in: Cognitive Computation 6/2019

26-06-2018

A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network

Authors: Fei Gao, Teng Huang, Jinping Sun, Jun Wang, Amir Hussain, Erfu Yang

Published in: Cognitive Computation | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an attempt to exploit the automatic feature extraction ability of biologically-inspired deep learning models, and enhance the learning of target features, we propose a novel deep learning algorithm. This is based on a deep convolutional neural network (DCNN) trained with an improved cost function, and combined with a support vector machine (SVM). Specifically, class separation information, which explicitly facilitates intra-class compactness and inter-class separability in the process of learning features, is added to an improved cost function as a regularization term, to enhance the DCNN’s feature extraction ability. The enhanced DCNN is applied to learn the features of Synthetic Aperture Radar (SAR) images, and the SVM is utilized to map features into output labels. Simulation experiments are performed using benchmark SAR image data from the Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Comparative results demonstrate the effectiveness of our proposed method, with an average accuracy of 99% on ten types of targets, including variants and articulated targets. We conclude that our proposed DCNN method has significant potential to be exploited for SAR image target recognition, and can serve as a new benchmark for the research community.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gao F, Ma F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Biologically inspired progressive enhancement target detection from heavy cluttered sar images. Cogn Comput 2016;8(5):1–12.CrossRef Gao F, Ma F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Biologically inspired progressive enhancement target detection from heavy cluttered sar images. Cogn Comput 2016;8(5):1–12.CrossRef
2.
go back to reference Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual attention model based vehicle target detection in synthetic aperture radar images: a novel approach. Cogn Comput 2015;7(4):434–44.CrossRef Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual attention model based vehicle target detection in synthetic aperture radar images: a novel approach. Cogn Comput 2015;7(4):434–44.CrossRef
3.
go back to reference Owirka GJ, Verbout SM, Novak LM. Template-based SAR ATR performance using different image enhancement techniques. Proc Spie 1999;3721:302–19.CrossRef Owirka GJ, Verbout SM, Novak LM. Template-based SAR ATR performance using different image enhancement techniques. Proc Spie 1999;3721:302–19.CrossRef
4.
go back to reference Zhao Q, Principe JC. Support vector machines for sar automatic target recognition. IEEE Trans Aerospace Electron Syst 2001;37(2):643–54.CrossRef Zhao Q, Principe JC. Support vector machines for sar automatic target recognition. IEEE Trans Aerospace Electron Syst 2001;37(2):643–54.CrossRef
5.
go back to reference Ren J, Jiang J, Vlachos T. High-accuracy sub-pixel motion estimation from noisy images in Fourier domain. IEEE Trans Image Process 2010;19(5):1379–84.CrossRef Ren J, Jiang J, Vlachos T. High-accuracy sub-pixel motion estimation from noisy images in Fourier domain. IEEE Trans Image Process 2010;19(5):1379–84.CrossRef
6.
go back to reference Zabalza J, Ren J, Yang M, Zhang Y, Wang J, Marshall S, Han J. Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. Isprs J Photogrammetry Remote Sens 2014;93(7):112–22.CrossRef Zabalza J, Ren J, Yang M, Zhang Y, Wang J, Marshall S, Han J. Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. Isprs J Photogrammetry Remote Sens 2014;93(7):112–22.CrossRef
7.
go back to reference Zabalza J, Ren J, Ren J, Liu Z, Marshall S. Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging. Appl Opt 2014;53(20): 4440.CrossRef Zabalza J, Ren J, Ren J, Liu Z, Marshall S. Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging. Appl Opt 2014;53(20): 4440.CrossRef
8.
go back to reference Lin C, Wang B, Zhao X, Pang M. Optimizing kernel PCA using sparse representation-based classifier for MSTAR SAR image target recognition. Math Problems Eng, 2013,(2013-5-2) 2013;2013(6):707–24. Lin C, Wang B, Zhao X, Pang M. Optimizing kernel PCA using sparse representation-based classifier for MSTAR SAR image target recognition. Math Problems Eng, 2013,(2013-5-2) 2013;2013(6):707–24.
9.
go back to reference Liu H, Li S. Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing 2013;113(7):97–104.CrossRef Liu H, Li S. Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing 2013;113(7):97–104.CrossRef
10.
go back to reference Hinton G, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science July 2006;313(5786):504–7.CrossRef Hinton G, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science July 2006;313(5786):504–7.CrossRef
11.
go back to reference Han J, Zhang D, Cheng G, Guo L, Ren J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geoscience Remote Sens 2015;53(6): 3325–37.CrossRef Han J, Zhang D, Cheng G, Guo L, Ren J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geoscience Remote Sens 2015;53(6): 3325–37.CrossRef
12.
go back to reference Montufar G, Ay N. Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Comput 2011;23(5):1306.CrossRef Montufar G, Ay N. Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Comput 2011;23(5):1306.CrossRef
13.
go back to reference Won S, Young SS. Assessing the accuracy of image tracking algorithms on visible and thermal imagery using a deep restricted Boltzmann machine. Proc Spie 2012;8401(7):6. Won S, Young SS. Assessing the accuracy of image tracking algorithms on visible and thermal imagery using a deep restricted Boltzmann machine. Proc Spie 2012;8401(7):6.
14.
go back to reference Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016;214(C):1062.CrossRef Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016;214(C):1062.CrossRef
15.
go back to reference Sun M, Zhang D, Ren J, Wang Z, Jin JS. Brushstroke based sparse hybrid convolutional neural networks for author classification of chinese ink-wash paintings. IEEE International Conference on Image Processing; 2015. p. 626–630. Sun M, Zhang D, Ren J, Wang Z, Jin JS. Brushstroke based sparse hybrid convolutional neural networks for author classification of chinese ink-wash paintings. IEEE International Conference on Image Processing; 2015. p. 626–630.
16.
go back to reference Wen G, Hou Z, Li H, Li D, Jiang L, Xun E. Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn Comput 2017;9(5):597–610.CrossRef Wen G, Hou Z, Li H, Li D, Jiang L, Xun E. Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn Comput 2017;9(5):597–610.CrossRef
17.
go back to reference Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cogn Comput 2018;10(1):179–86.CrossRef Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cogn Comput 2018;10(1):179–86.CrossRef
18.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. (2015) 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. (2015) 770–8.
19.
21.
go back to reference Chen S, Wang H. SAR target recognition based on deep learning. International Conference on Data Science and Advanced Analytics; 2015. p. 541–547. Chen S, Wang H. SAR target recognition based on deep learning. International Conference on Data Science and Advanced Analytics; 2015. p. 541–547.
22.
go back to reference Li X, Li C, Wang P, Men Z, Xu H. SAR ATR based on dividing CNN into CAE and SNN. Synthetic Aperture Radar; 2015. p. 676–679. Li X, Li C, Wang P, Men Z, Xu H. SAR ATR based on dividing CNN into CAE and SNN. Synthetic Aperture Radar; 2015. p. 676–679.
23.
go back to reference Wagner S. Combination of convolutional feature extraction and support vector machines for radar ATR. International Conference on Information Fusion; 2014. p. 1–6. Wagner S. Combination of convolutional feature extraction and support vector machines for radar ATR. International Conference on Information Fusion; 2014. p. 1–6.
24.
go back to reference Huang FJ, Lecun Y. Large-scale learning with SVM and convolutional for generic object categorization. IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2006. p. 284–291. Huang FJ, Lecun Y. Large-scale learning with SVM and convolutional for generic object categorization. IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2006. p. 284–291.
25.
go back to reference Wagner S. Morphological component analysis in SAR images to improve the generalization of ATR systems. International Workshop on Compressed Sensing Theory and ITS Applications To Radar, Sonar and Remote Sensing; 2015. p. 46–50. Wagner S. Morphological component analysis in SAR images to improve the generalization of ATR systems. International Workshop on Compressed Sensing Theory and ITS Applications To Radar, Sonar and Remote Sensing; 2015. p. 46–50.
26.
go back to reference Ding J, Chen B, Liu H, Huang M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience Remote Sens Lett 2016;13(3):364–8. Ding J, Chen B, Liu H, Huang M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience Remote Sens Lett 2016;13(3):364–8.
27.
go back to reference Chen S, Wang H, Xu F, Jin YQ. Target classification using the deep convolutional networks for SAR images. IEEE Trans Geoscience Remote Sens 2016;54(8):4806–17.CrossRef Chen S, Wang H, Xu F, Jin YQ. Target classification using the deep convolutional networks for SAR images. IEEE Trans Geoscience Remote Sens 2016;54(8):4806–17.CrossRef
28.
go back to reference Du K, Deng Y, Wang R, Zhao T, Li N. SAR ATR based on displacement- and rotation-insensitive CNN. Remote Sens Lett 2016;7(9):895–904.CrossRef Du K, Deng Y, Wang R, Zhao T, Li N. SAR ATR based on displacement- and rotation-insensitive CNN. Remote Sens Lett 2016;7(9):895–904.CrossRef
29.
go back to reference Kreucher C. Modern approaches in deep learning for SAR ATR. Algorithms for Synthetic Aperture Radar Imagery XXIII; 2016. p. 98430N. Kreucher C. Modern approaches in deep learning for SAR ATR. Algorithms for Synthetic Aperture Radar Imagery XXIII; 2016. p. 98430N.
30.
go back to reference Pathak G, Singh B, Panigrahi BK. Back propagation algorithm based controller for autonomous wind-DG microgrid. IEEE Trans Ind Appl 2016;52(5):4408–15.CrossRef Pathak G, Singh B, Panigrahi BK. Back propagation algorithm based controller for autonomous wind-DG microgrid. IEEE Trans Ind Appl 2016;52(5):4408–15.CrossRef
31.
go back to reference Mossing JC, Ross TD. Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions. Proceedings of SPIE—The International Society for Optical Engineering 1998;3370:13. Mossing JC, Ross TD. Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions. Proceedings of SPIE—The International Society for Optical Engineering 1998;3370:13.
32.
go back to reference Ross TD, Velten VJ, Mossing JC. Standard SAR ATR evaluation experiments using the MSTAR public release data set. Algorithms for Synthetic Aperture Radar Imagery V; 1998. p. 566– 573. Ross TD, Velten VJ, Mossing JC. Standard SAR ATR evaluation experiments using the MSTAR public release data set. Algorithms for Synthetic Aperture Radar Imagery V; 1998. p. 566– 573.
33.
go back to reference Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. Computer Science. Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. Computer Science.
34.
go back to reference Iii GJ, Bhanu B. Recognizing articulated objects in SAR images. Pattern Recogn 2001;34(2):469–85.CrossRef Iii GJ, Bhanu B. Recognizing articulated objects in SAR images. Pattern Recogn 2001;34(2):469–85.CrossRef
35.
go back to reference Li G, Deng L, Xu Y, Wen C, Wang W, Jing P, Shi L. Temperature based restricted Boltzmann machines. Sci Rep 2016;6:19133.CrossRef Li G, Deng L, Xu Y, Wen C, Wang W, Jing P, Shi L. Temperature based restricted Boltzmann machines. Sci Rep 2016;6:19133.CrossRef
36.
go back to reference Guo C, Pleiss G, Sun Y, Weinberger KQ. 2017. On calibration of modern neural networks. Guo C, Pleiss G, Sun Y, Weinberger KQ. 2017. On calibration of modern neural networks.
37.
go back to reference Singh R, Kumar BV. Performance of the extended maximum average correlation height (EMACH) filter and the polynomial distance classifier correlation filter (PDCCF) for multiclass SAR detection and classification. Proceedings of SPIE—The International Society for Optical Engineering 2002;4727:265–76. Singh R, Kumar BV. Performance of the extended maximum average correlation height (EMACH) filter and the polynomial distance classifier correlation filter (PDCCF) for multiclass SAR detection and classification. Proceedings of SPIE—The International Society for Optical Engineering 2002;4727:265–76.
38.
go back to reference Srinivas U. SAR automatic target recognition using discriminative graphical models. IEEE International conference on image processing, ICIP 2011, Brussels, Belgium; 2014. p. 33–36. Srinivas U. SAR automatic target recognition using discriminative graphical models. IEEE International conference on image processing, ICIP 2011, Brussels, Belgium; 2014. p. 33–36.
39.
go back to reference Dong G, Wang N, Kuang G. Sparse representation of monogenic signal: with application to target recognition in SAR images. IEEE Signal Process Lett 2014;21(8):952–6.CrossRef Dong G, Wang N, Kuang G. Sparse representation of monogenic signal: with application to target recognition in SAR images. IEEE Signal Process Lett 2014;21(8):952–6.CrossRef
40.
go back to reference Dong G, Kuang G. Classification on the monogenic scale space: application to target recognition in SAR image. IEEE Trans Image Process 2015;24(8):2527–39.CrossRef Dong G, Kuang G. Classification on the monogenic scale space: application to target recognition in SAR image. IEEE Trans Image Process 2015;24(8):2527–39.CrossRef
41.
go back to reference Park JI, Kim KT. Modified polar mapping classifier for SAR automatic target recognition. IEEE Trans Aerospace Electron Syst Aes 2014;50(2):1092–107.CrossRef Park JI, Kim KT. Modified polar mapping classifier for SAR automatic target recognition. IEEE Trans Aerospace Electron Syst Aes 2014;50(2):1092–107.CrossRef
Metadata
Title
A New Algorithm for SAR Image Target Recognition Based on an Improved Deep Convolutional Neural Network
Authors
Fei Gao
Teng Huang
Jinping Sun
Jun Wang
Amir Hussain
Erfu Yang
Publication date
26-06-2018
Publisher
Springer US
Published in
Cognitive Computation / Issue 6/2019
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9563-z

Other articles of this Issue 6/2019

Cognitive Computation 6/2019 Go to the issue

Premium Partner