Skip to main content
Top
Published in: Rheologica Acta 1/2014

01-01-2014 | Original Contribution

A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates

Authors: Zahra Fahimi, Chase P. Broedersz, Thomas H. S. van Kempen, Daniel Florea, Gerrit W. M. Peters, Hans M. Wyss

Published in: Rheologica Acta | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The parallel plates geometry is often deemed unsuitable for nonlinear viscoelasticity measurements because the strain field, and thus the nonlinear response, varies across the sample. Although cone–plate and Couette geometries are designed to circumvent this problem by ensuring a uniform strain field, it is not always easy to shape the material to the complex shapes that is required for these geometries. This has motivated the development of techniques to accurately determine the nonlinear stress response using the more convenient plate–plate geometry. Here, we introduce a new approach to obtain this true material response in large amplitude oscillatory shear (LAOS) experiments using the plate–plate geometry. By tracing the Fourier components of the torque response and their derivatives with respect to the maximum applied deformation, we accurately obtain the material’s true stress–strain response from parallel plate measurements. The approach does not require any assumptions about the material’s viscoelastic behavior. We test our approach experimentally on fibrin biopolymer gels, as well as numerically on a Giesekus model. We confirm in both cases that our approach captures the detailed shape of the true stress response in LAOS measurements. Moreover, we also show that our method is less sensitive to experimental noise present in the data than the previous standard method. Our approach for obtaining the true stress response from parallel plate measurements is directly applicable to measurements on a wide range of solid-like nonlinear materials, including biological networks, tissues, or hydrogels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Broedersz CP, Kasza KE, Jawerth LM, Muenster S, Weitz DA, MacKintosh FC (2010) Measurement of nonlinear rheology of crosslinked biopolymer gels. Soft Matter 6(17):4120–4127CrossRef Broedersz CP, Kasza KE, Jawerth LM, Muenster S, Weitz DA, MacKintosh FC (2010) Measurement of nonlinear rheology of crosslinked biopolymer gels. Soft Matter 6(17):4120–4127CrossRef
go back to reference Carvalho MS, Padmanabhan M, Macosko CW (1994) Single point correction for parallel disks geometry. J Rheol 38(6):1925–1936CrossRef Carvalho MS, Padmanabhan M, Macosko CW (1994) Single point correction for parallel disks geometry. J Rheol 38(6):1925–1936CrossRef
go back to reference Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRef Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRef
go back to reference Ewoldt RH, Clasen C, Hosoi AE, McKinley GH (2007) Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3(5):634–643CrossRef Ewoldt RH, Clasen C, Hosoi AE, McKinley GH (2007) Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3(5):634–643CrossRef
go back to reference Ewoldt RH, Hosoi AE, McKinley GH (2008) New measurements for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef Ewoldt RH, Hosoi AE, McKinley GH (2008) New measurements for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef
go back to reference Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305CrossRef Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305CrossRef
go back to reference Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11(1):69–109CrossRef Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11(1):69–109CrossRef
go back to reference Graeme RC, Yee-Kwong L, Yeow YL (2005) Obtaining the shear stress shear rate relationship and yield stress of liquid foods from parallel disk data. J Food Sci 70(1):50–55CrossRef Graeme RC, Yee-Kwong L, Yeow YL (2005) Obtaining the shear stress shear rate relationship and yield stress of liquid foods from parallel disk data. J Food Sci 70(1):50–55CrossRef
go back to reference Hyun K, Kim W (2011) A new non-linear parameter Q from FT-rheology under nonlinear dynamic oscillatory shear for polymer melts system. Korea-Australia Rheol J 23(4):227–235CrossRef Hyun K, Kim W (2011) A new non-linear parameter Q from FT-rheology under nonlinear dynamic oscillatory shear for polymer melts system. Korea-Australia Rheol J 23(4):227–235CrossRef
go back to reference Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753CrossRef Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753CrossRef
go back to reference Janmey PA, Amis EJ, Ferry JD (1983) Rheology of fibrin clots VI. Stress-relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. J Rheol 27(2):135–153CrossRef Janmey PA, Amis EJ, Ferry JD (1983) Rheology of fibrin clots VI. Stress-relaxation, creep, and differential dynamic modulus of fine clots in large shearing deformations. J Rheol 27(2):135–153CrossRef
go back to reference Lopez-Suevos F, Frazier CE (2006) Parallel plate rheology of latex films bonded to wood. Holzforschung 60(1):47–52CrossRef Lopez-Suevos F, Frazier CE (2006) Parallel plate rheology of latex films bonded to wood. Holzforschung 60(1):47–52CrossRef
go back to reference Macosko CW (1994) Rheology principles, measurement and application. Wiley, New York Macosko CW (1994) Rheology principles, measurement and application. Wiley, New York
go back to reference Ng TSK, McKinley GH, Ewoldt RH (2011) Large amplitude oscillatory shear flow of gluten dough: a model power-law gel. J Rheol 55(3):627–654CrossRef Ng TSK, McKinley GH, Ewoldt RH (2011) Large amplitude oscillatory shear flow of gluten dough: a model power-law gel. J Rheol 55(3):627–654CrossRef
go back to reference Phan-Thien N, Newberrys M, Tanner RI (2000) Nonlinear oscillatory flow of a soft solid-like viscoelastic material. J Non-Newtonian Fluid Mech 92(1):67–80CrossRef Phan-Thien N, Newberrys M, Tanner RI (2000) Nonlinear oscillatory flow of a soft solid-like viscoelastic material. J Non-Newtonian Fluid Mech 92(1):67–80CrossRef
go back to reference Piechocka IK, Bacabac M, Potters M, MacKintosh FC, Koenderink GH (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98(10):2281–2289CrossRef Piechocka IK, Bacabac M, Potters M, MacKintosh FC, Koenderink GH (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98(10):2281–2289CrossRef
go back to reference Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef
go back to reference Shah JV, Janmey PA (1997) Strain hardening of fibrin gels and plasma clots. Rheol Acta 36(3):262–268 Shah JV, Janmey PA (1997) Strain hardening of fibrin gels and plasma clots. Rheol Acta 36(3):262–268
go back to reference Soskey PR, Winter HH (1984) Large step shear strain experiments with parallel disk rotational rheometers. J Rheol 28(28):625–645CrossRef Soskey PR, Winter HH (1984) Large step shear strain experiments with parallel disk rotational rheometers. J Rheol 28(28):625–645CrossRef
go back to reference Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194CrossRef Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194CrossRef
go back to reference Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS is LAOS: validation of time-temperature superposition under large amplitude oscillatory shear. Rheol Acta 50(9–10):795–807CrossRef Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS is LAOS: validation of time-temperature superposition under large amplitude oscillatory shear. Rheol Acta 50(9–10):795–807CrossRef
go back to reference Wilhelm M (2002) Fourier transform rheology. Macromol Mater Eng 287(2):83–105CrossRef Wilhelm M (2002) Fourier transform rheology. Macromol Mater Eng 287(2):83–105CrossRef
go back to reference Wilhelm M, Maring D, Spiess HW (1998) Fourier transform rheology. Rheol Acta 37(4):399–405CrossRef Wilhelm M, Maring D, Spiess HW (1998) Fourier transform rheology. Rheol Acta 37(4):399–405CrossRef
go back to reference Yoshimura A, Prudhomme RK (1988) Wall slip corrections for Cuette and parallel disk viscometers. J Rheol 32(1):53–67CrossRef Yoshimura A, Prudhomme RK (1988) Wall slip corrections for Cuette and parallel disk viscometers. J Rheol 32(1):53–67CrossRef
Metadata
Title
A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates
Authors
Zahra Fahimi
Chase P. Broedersz
Thomas H. S. van Kempen
Daniel Florea
Gerrit W. M. Peters
Hans M. Wyss
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
Rheologica Acta / Issue 1/2014
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-013-0738-y

Other articles of this Issue 1/2014

Rheologica Acta 1/2014 Go to the issue

Premium Partners