Skip to main content
Top
Published in: Neural Computing and Applications 9/2017

14-05-2016 | IBPRIA 2015

A new ASM framework for left ventricle segmentation exploring slice variability in cardiac MRI volumes

Authors: Carlos Santiago, Jacinto C. Nascimento, Jorge S. Marques

Published in: Neural Computing and Applications | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three-dimensional active shape models use a set of annotated volumes to learn a shape model. Using unique landmarks to define the surface models in the training set, the shape model is able to learn the expected shape and variation modes of the segmentation. This information is then used during the segmentation process to impose shape constraints. A relevant problem in which these models are used is the segmentation of the left ventricle in 3D MRI volumes. In this problem, the annotations correspond to a set of contours that define the LV border at each volume slice. However, each volume has a different number of slices (thus, a different number of landmarks), which makes model learning difficult. Furthermore, motion artifacts and the large distance between slices make interpolation of voxel intensities a bad choice when applying the learned model to a test volume. These two problems raise the following questions: (1) how can we learn a shape model from volumes with a variable number of slices? and (2) how can we segment a test volume without interpolating voxel intensities between slices? This paper provides an answer to these questions by proposing a framework to deal with the variable number of slices in the training set and a resampling strategy for the test phase to segment the left ventricle in cardiac MRI volumes with any number of slices. The proposed method was evaluated on a public database with 660 volumes of both healthy and diseased patients, with promising results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abi-Nahed J, Jolly MP, Yang GZ (2006) Robust active shape models: a robust, generic and simple automatic segmentation tool. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention–MICCAI 2006. Springer, Berlin, Heidelberg, pp 1–8 Abi-Nahed J, Jolly MP, Yang GZ (2006) Robust active shape models: a robust, generic and simple automatic segmentation tool. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention–MICCAI 2006. Springer, Berlin, Heidelberg, pp 1–8
2.
go back to reference Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357CrossRef Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357CrossRef
3.
go back to reference Billet F, Sermesant M, Delingette H, Ayache N (2009) Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 376–385 Billet F, Sermesant M, Delingette H, Ayache N (2009) Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 376–385
4.
go back to reference Blake A, Isard M (1998) Image processing techniques for feature location. In: Active contours. Springer, London, pp 97–113 Blake A, Isard M (1998) Image processing techniques for feature location. In: Active contours. Springer, London, pp 97–113
5.
go back to reference Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JHC (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–1383CrossRef Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JHC (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–1383CrossRef
6.
go back to reference Carneiro G, Georgescu B, Good S, Comaniciu D (2008) Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans Med Imaging 27(9):1342–1355CrossRef Carneiro G, Georgescu B, Good S, Comaniciu D (2008) Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans Med Imaging 27(9):1342–1355CrossRef
7.
go back to reference Carneiro G, Nascimento JC (2010) Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures. In: Confernce computer vision and pattern recognition (CVPR) Carneiro G, Nascimento JC (2010) Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures. In: Confernce computer vision and pattern recognition (CVPR)
8.
go back to reference Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094CrossRef Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094CrossRef
9.
go back to reference Cootes T, Beeston C, Edwards G, Taylor C (1999) A unified framework for atlas matching using active appearance models. In: Kuba A, Šáamal M, Todd-Pokropek A (eds) Information processing in medical imaging. Springer, Berlin, Heidelberg, pp 322–333 Cootes T, Beeston C, Edwards G, Taylor C (1999) A unified framework for atlas matching using active appearance models. In: Kuba A, Šáamal M, Todd-Pokropek A (eds) Information processing in medical imaging. Springer, Berlin, Heidelberg, pp 322–333
10.
go back to reference Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef
11.
go back to reference Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2007) Automated, accurate and fast segmentation of 4D cardiac MR images. In: Sachse FB, Seemann G (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 474–483 Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2007) Automated, accurate and fast segmentation of 4D cardiac MR images. In: Sachse FB, Seemann G (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 474–483
12.
go back to reference Cremers D (2006) Dynamical statistical shape priors for level set-based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273CrossRef Cremers D (2006) Dynamical statistical shape priors for level set-based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273CrossRef
13.
go back to reference Cremers D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351CrossRef Cremers D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351CrossRef
14.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
15.
go back to reference Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Database-guided segmentation of anatomical structures with complex appearance. In: Confernce computer vision and pattern recognition (CVPR) Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Database-guided segmentation of anatomical structures with complex appearance. In: Confernce computer vision and pattern recognition (CVPR)
16.
go back to reference Gopal S, Terzopoulos D (2014) A unified statistical/deterministic deformable model for LV segmentation ins cardiac MRI. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds) Statistical atlases and computational models of the heart. Imaging and modelling challenges. Springer, Berlin, Heidelberg, pp 180–187 Gopal S, Terzopoulos D (2014) A unified statistical/deterministic deformable model for LV segmentation ins cardiac MRI. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds) Statistical atlases and computational models of the heart. Imaging and modelling challenges. Springer, Berlin, Heidelberg, pp 180–187
17.
go back to reference Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581CrossRef Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581CrossRef
18.
go back to reference Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRef Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRef
19.
go back to reference Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MATHCrossRef Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MATHCrossRef
20.
go back to reference Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2614–2662CrossRef Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2614–2662CrossRef
21.
go back to reference Jolly M (2009) Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J Cardiac MR Left Ventricle Segm Chall 4 Jolly M (2009) Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J Cardiac MR Left Ventricle Segm Chall 4
22.
go back to reference Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATHCrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331MATHCrossRef
23.
go back to reference Kaus MR, Jv Berg, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254CrossRef Kaus MR, Jv Berg, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254CrossRef
24.
go back to reference Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265CrossRef Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265CrossRef
25.
go back to reference Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386CrossRef Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386CrossRef
26.
go back to reference Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203CrossRef Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203CrossRef
27.
go back to reference Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175CrossRef Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175CrossRef
28.
go back to reference Medrano-Gracia P, Cowan BR, Bluemke DA, Finn JP, Lima JA, Suinesiaputra A, Young AA (2013) Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the Heart, vol 7945., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 433–441CrossRef Medrano-Gracia P, Cowan BR, Bluemke DA, Finn JP, Lima JA, Suinesiaputra A, Young AA (2013) Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the Heart, vol 7945., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 433–441CrossRef
29.
go back to reference Mitchell S, Lelieveldt B, van der Geest R, Bosch H, Reiber J, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423CrossRef Mitchell S, Lelieveldt B, van der Geest R, Bosch H, Reiber J, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423CrossRef
30.
go back to reference Mitchell SC, Bosch JG, Lelieveldt BP, van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178CrossRef Mitchell SC, Bosch JG, Lelieveldt BP, van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178CrossRef
31.
go back to reference Nascimento JC, Marques JS (2008) Robust shape tracking with multiple models in ultrasound images. IEEE Trans Image Process 17(3):392–406MathSciNetCrossRef Nascimento JC, Marques JS (2008) Robust shape tracking with multiple models in ultrasound images. IEEE Trans Image Process 17(3):392–406MathSciNetCrossRef
32.
go back to reference O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474CrossRef O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474CrossRef
33.
go back to reference Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776CrossRef Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776CrossRef
34.
go back to reference Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247MATHCrossRef Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247MATHCrossRef
35.
go back to reference Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184CrossRef Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184CrossRef
36.
go back to reference Rogers M, Graham J (2006) Robust active shape model search. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer vision–ECCV 2002. Springer, Berlin, Heidelberg, pp 517–530 Rogers M, Graham J (2006) Robust active shape model search. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer vision–ECCV 2002. Springer, Berlin, Heidelberg, pp 517–530
38.
go back to reference Santiago C, Nascimento JC, Marques JS (2013) Performance evaluation of point matching algorithms for left ventricle motion analysis in MRI. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 4398–4401 Santiago C, Nascimento JC, Marques JS (2013) Performance evaluation of point matching algorithms for left ventricle motion analysis in MRI. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 4398–4401
39.
40.
go back to reference Santiago C, Nascimento JC, Marques JS (2015) Robust 3D active shape model for the segmentation of the left ventricle in MRI. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis—IbPRIA’15. Springer, Switzerland, pp 283–290 Santiago C, Nascimento JC, Marques JS (2015) Robust 3D active shape model for the segmentation of the left ventricle in MRI. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis—IbPRIA’15. Springer, Switzerland, pp 283–290
41.
go back to reference Sonka M, Zhang X, Siebes M, Bissing M, Dejong S, Collins S, Mckay C (1995) Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 14:719–732CrossRef Sonka M, Zhang X, Siebes M, Bissing M, Dejong S, Collins S, Mckay C (1995) Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 14:719–732CrossRef
42.
go back to reference Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35CrossRef Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35CrossRef
43.
go back to reference Tzimiropoulos G, Pantic M (2013) Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the IEEE international conference on computer vision. pp 593–600 Tzimiropoulos G, Pantic M (2013) Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the IEEE international conference on computer vision. pp 593–600
44.
go back to reference Uzunbas MG, Zhang S, Pohl KM, Metaxas D, Axel L (2012) Segmentation of myocardium using deformable regions and graph cuts. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, pp 254–257 Uzunbas MG, Zhang S, Pohl KM, Metaxas D, Axel L (2012) Segmentation of myocardium using deformable regions and graph cuts. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, pp 254–257
45.
go back to reference Weng J, Singh A, Chiu M (1997) Learning-based ventricle detection from cardiac mr and ct images. IEEE Trans Med Imaging 16(4):378–391CrossRef Weng J, Singh A, Chiu M (1997) Learning-based ventricle detection from cardiac mr and ct images. IEEE Trans Med Imaging 16(4):378–391CrossRef
46.
go back to reference Zhang L, Geiser E (1984) An effective algorithm for extracting serial endocardial borders from 2-D echocardiograms. IEEE Trans Biomed Eng BME–31:441–447CrossRef Zhang L, Geiser E (1984) An effective algorithm for extracting serial endocardial borders from 2-D echocardiograms. IEEE Trans Biomed Eng BME–31:441–447CrossRef
47.
go back to reference Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681CrossRef Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681CrossRef
48.
go back to reference Zhou XS, Comaniciu D, Gupta A (2005) An information fusion framework for robust shape tracking. IEEE Trans Pattern Anal Mach Intell 27(1):115–129CrossRef Zhou XS, Comaniciu D, Gupta A (2005) An information fusion framework for robust shape tracking. IEEE Trans Pattern Anal Mach Intell 27(1):115–129CrossRef
49.
go back to reference Zhuang X, Hawkes D, Crum W, Boubertakh R, Uribe S, Atkinson D, Batchelor P, Schaeffter T, Razavi R, Hill D (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Reinhardt JM, Pluim JPW (eds) Medical imaging. International Society for Optics and Photonics, SPIE, pp 691408 Zhuang X, Hawkes D, Crum W, Boubertakh R, Uribe S, Atkinson D, Batchelor P, Schaeffter T, Razavi R, Hill D (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Reinhardt JM, Pluim JPW (eds) Medical imaging. International Society for Optics and Photonics, SPIE, pp 691408
50.
go back to reference Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625CrossRef Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625CrossRef
Metadata
Title
A new ASM framework for left ventricle segmentation exploring slice variability in cardiac MRI volumes
Authors
Carlos Santiago
Jacinto C. Nascimento
Jorge S. Marques
Publication date
14-05-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2017
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2337-1

Other articles of this Issue 9/2017

Neural Computing and Applications 9/2017 Go to the issue

Premium Partner