Skip to main content
Top
Published in: Neural Computing and Applications 9/2017

05-02-2016 | Original Article

A new efficient approach for fast and accurate design of frequency selective surfaces based on geometry estimation networks

Authors: Sara Moinzad, Ali Abdolali

Published in: Neural Computing and Applications | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial neural networks are a favorite modern tool for high accuracy designing frequency selective surfaces (FSSs) in RF and microwave engineering field. In this paper, a new fast and precise ANN-based algorithm for designing FSSs is presented. This algorithm, unless the previous works, can develop the structures with due attention to features of incident waves and improve the applicability of developed FSSs. For achieving this algorithm, at first, a new method is presented for the better preparation of training datasets, called frequency sweep method (FSM). The advantage of FSM is to reduce the size of training datasets and prevent from superfluous simulations. So the time needed for the preparation of training datasets and to train the networks is less than before. Following that, FSM is used to train geometry estimation ANN (GEANN) with primary goal of FSSs design in little time and without any optimization algorithm. The proposed design procedure is complete design and analysis unit that consisted of a sequence of GEANN and traditional response calculation ANNs (RCANNs). GEANN is used to estimate geometric dimensions of FSSs with desired incident wave, and RCANNs are used to calculate the frequency response of FSSs under other various incident waves. The results show that required time for designing FSS is less than 30 ms, and errors are <1 %. Both analytical and experimental results confirm the correctness of predicted values.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Munk B (2000) Frequency selective surfaces: theory and design. Wiley, New YorkCrossRef Munk B (2000) Frequency selective surfaces: theory and design. Wiley, New YorkCrossRef
2.
go back to reference Wu T (1995) Frequency selective surface and grid array. Wiley, New York Wu T (1995) Frequency selective surface and grid array. Wiley, New York
3.
go back to reference Bayatpur F (2009) Metamaterial-inspired frequency-selective surfaces. Dissertation, the University of Michigan Bayatpur F (2009) Metamaterial-inspired frequency-selective surfaces. Dissertation, the University of Michigan
4.
go back to reference Kohlgraf D (2005) Design and testing of a frequency selective surface (FSS) based wide-band multiple antenna system. Dissertation, Department of Electrical and Computer Engineering, The Ohio State University Kohlgraf D (2005) Design and testing of a frequency selective surface (FSS) based wide-band multiple antenna system. Dissertation, Department of Electrical and Computer Engineering, The Ohio State University
5.
go back to reference Kiani G, Karlson A (2005) Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. Dissertation, Lund Institute of Technology, Sweden Kiani G, Karlson A (2005) Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. Dissertation, Lund Institute of Technology, Sweden
6.
go back to reference Cahill R (2001) Frequency selective surface devices for separating multiple frequencies. United State Patent 6208316 Cahill R (2001) Frequency selective surface devices for separating multiple frequencies. United State Patent 6208316
7.
go back to reference Chiu C, Chang Y (2010) Suppression of spurious emissions from a spiral inductor through the use of a frequency selective surface. IEEE Trans Electromagn Compat 52:56–63CrossRef Chiu C, Chang Y (2010) Suppression of spurious emissions from a spiral inductor through the use of a frequency selective surface. IEEE Trans Electromagn Compat 52:56–63CrossRef
8.
go back to reference Monni S, Neto A (2009) Frequency selective surface to prevent interference between radar and SATCOM antennas. IEEE Antennas Wireless Propag Lett 8:220–223CrossRef Monni S, Neto A (2009) Frequency selective surface to prevent interference between radar and SATCOM antennas. IEEE Antennas Wireless Propag Lett 8:220–223CrossRef
9.
go back to reference Euler M, Fusco V, Cahill R, Dickie R (2010) Comparison of frequency selective screen-based linear to circular split-ring polarization converters. IET Microw Antennas Propag 4:1764–1772CrossRef Euler M, Fusco V, Cahill R, Dickie R (2010) Comparison of frequency selective screen-based linear to circular split-ring polarization converters. IET Microw Antennas Propag 4:1764–1772CrossRef
10.
go back to reference Monorchio A, Manara G (2002) Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces. IEEE Antennas Wireless Propag Lett 1:196–199CrossRef Monorchio A, Manara G (2002) Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces. IEEE Antennas Wireless Propag Lett 1:196–199CrossRef
11.
go back to reference Kent E, Doken B, Kartal M (2010) A new equivalent circuit based FSS design method by using a genetic algorithm. EngOpt, Lisbon Kent E, Doken B, Kartal M (2010) A new equivalent circuit based FSS design method by using a genetic algorithm. EngOpt, Lisbon
12.
go back to reference Ohira M, Deguchi H, Tsuji M, Shigesava H (2005) Analysis of frequency selective surface with an arbitrarily shaped element by equivalent circuit model. Electron Comm JPN 2(88):9–17 Ohira M, Deguchi H, Tsuji M, Shigesava H (2005) Analysis of frequency selective surface with an arbitrarily shaped element by equivalent circuit model. Electron Comm JPN 2(88):9–17
13.
go back to reference Bossard J, Werner H, Mayer S, Smith A (2006) The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications. IEEE Trans Antennas Propag 54:1265–1276CrossRef Bossard J, Werner H, Mayer S, Smith A (2006) The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications. IEEE Trans Antennas Propag 54:1265–1276CrossRef
14.
go back to reference Marcuvitz N (1951) Waveguide handbook. McGraw-Hill, New York Marcuvitz N (1951) Waveguide handbook. McGraw-Hill, New York
15.
go back to reference Langley R, Parker E (1983) Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett 19:675–677CrossRef Langley R, Parker E (1983) Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett 19:675–677CrossRef
16.
go back to reference Lee C, Langley R (1985) Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence. In: IEEE Proceedings pt.H, vol 132, pp 395–399 Lee C, Langley R (1985) Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence. In: IEEE Proceedings pt.H, vol 132, pp 395–399
17.
go back to reference Costa F, Monorchio A, Manara G (2012) Efficient analysis of frequency selective surfaces by a simple equivalent circuit approach. IEEE Trans Antennas Propag 54:35–48CrossRef Costa F, Monorchio A, Manara G (2012) Efficient analysis of frequency selective surfaces by a simple equivalent circuit approach. IEEE Trans Antennas Propag 54:35–48CrossRef
18.
go back to reference Kosmos P, Feresidis AP, Goussetis G (2007) Periodic FDTD analysis of a 2-DLeaky-wave planar antenna based on dipole frequency selective surfaces. IEEE Trans Antennas Propag 55:2006–2012CrossRef Kosmos P, Feresidis AP, Goussetis G (2007) Periodic FDTD analysis of a 2-DLeaky-wave planar antenna based on dipole frequency selective surfaces. IEEE Trans Antennas Propag 55:2006–2012CrossRef
19.
go back to reference Elmahgoub K, Yang Fan, Elshrbeni AZ, Demir V (2012) Analysis of multilayered periodic structures using a hybrid FDTD/GSM Method. IEEE Antennas Propag Mag 54:57–73CrossRef Elmahgoub K, Yang Fan, Elshrbeni AZ, Demir V (2012) Analysis of multilayered periodic structures using a hybrid FDTD/GSM Method. IEEE Antennas Propag Mag 54:57–73CrossRef
20.
go back to reference Dardenne X, Craeye C (2008) Method of moment simulation of infinitely periodic structures combining metal connected dielectric objects. IEEE Trans Antennas Propag 56:2372–2380MathSciNetCrossRef Dardenne X, Craeye C (2008) Method of moment simulation of infinitely periodic structures combining metal connected dielectric objects. IEEE Trans Antennas Propag 56:2372–2380MathSciNetCrossRef
21.
go back to reference Bozzi M, Perregrini L (2003) Analysis of multilayered printed frequency selective surfaces by the MoM/BI-RME method. IEEE Trans Antennas Propag 10:2830–2836CrossRef Bozzi M, Perregrini L (2003) Analysis of multilayered printed frequency selective surfaces by the MoM/BI-RME method. IEEE Trans Antennas Propag 10:2830–2836CrossRef
22.
go back to reference Bozzi M, Perregrini L (2002) Efficient Analysis of thin conductive screens perforated periodically with arbitrary shaped apertures. Electron Lett 35:1085–1087CrossRef Bozzi M, Perregrini L (2002) Efficient Analysis of thin conductive screens perforated periodically with arbitrary shaped apertures. Electron Lett 35:1085–1087CrossRef
23.
go back to reference Ohira M, Deguchi H, Tsuji M (2004) multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry refinement technique. IEEE Trans, Antennas Propag 52 Ohira M, Deguchi H, Tsuji M (2004) multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry refinement technique. IEEE Trans, Antennas Propag 52
24.
go back to reference Weile D, Michielssen E (2000) The use of domain decomposition genetic algorithms exploiting model reduction for the design of frequency selective surfaces. Comput Methods Appl Mech Eng 186:439–458MathSciNetCrossRefMATH Weile D, Michielssen E (2000) The use of domain decomposition genetic algorithms exploiting model reduction for the design of frequency selective surfaces. Comput Methods Appl Mech Eng 186:439–458MathSciNetCrossRefMATH
25.
go back to reference Lukes Z, Lacik J, Raida Z (2007) Global multi-objective optimization in the design of frequency selective surfaces. EuCAP, EdinburghCrossRef Lukes Z, Lacik J, Raida Z (2007) Global multi-objective optimization in the design of frequency selective surfaces. EuCAP, EdinburghCrossRef
26.
go back to reference Gutierrez A, Lanza M, Barriuso I, Valle L (2011) Multilayer FSS optimizer based on PSO and CG-FFT. APSURSI, SpokaneCrossRef Gutierrez A, Lanza M, Barriuso I, Valle L (2011) Multilayer FSS optimizer based on PSO and CG-FFT. APSURSI, SpokaneCrossRef
27.
go back to reference Zhang B, Xue Z, Li W (2012) Particle swarm optimization of frequency selective surface. CSQRWC, New Taipei CityCrossRef Zhang B, Xue Z, Li W (2012) Particle swarm optimization of frequency selective surface. CSQRWC, New Taipei CityCrossRef
28.
go back to reference Luo XF (2011) Differential evolution strategy cum equivalent circuit method for the design of multiband frequency selective surfaces. J China Univ Posts Telecommun 18:101–105CrossRef Luo XF (2011) Differential evolution strategy cum equivalent circuit method for the design of multiband frequency selective surfaces. J China Univ Posts Telecommun 18:101–105CrossRef
29.
go back to reference Luo XF, Qing A, Lee K (2005) Application of the differential-evolution strategy to the design of frequency selective surfaces. Int J RF Microwave Comp Aid Eng 15:173–180CrossRef Luo XF, Qing A, Lee K (2005) Application of the differential-evolution strategy to the design of frequency selective surfaces. Int J RF Microwave Comp Aid Eng 15:173–180CrossRef
30.
go back to reference da Silva MR, Nobrega CDL, Silva PHDF, D’Assunção AG (2014) Optimization of FSS with Sierpinski island fractal elements using population-based search algorithms and MLP neural network. Microw Opt Technol Lett 56:827–831CrossRef da Silva MR, Nobrega CDL, Silva PHDF, D’Assunção AG (2014) Optimization of FSS with Sierpinski island fractal elements using population-based search algorithms and MLP neural network. Microw Opt Technol Lett 56:827–831CrossRef
31.
go back to reference Gunes F, Demirel S, Nesil S (2014) A novel design approach to x-band Minkowski reflectarray antenna using the full-wave EM simulation-based complete neural model with a hybrid ga-nm algorithm. Radio Eng 23:144–153 Gunes F, Demirel S, Nesil S (2014) A novel design approach to x-band Minkowski reflectarray antenna using the full-wave EM simulation-based complete neural model with a hybrid ga-nm algorithm. Radio Eng 23:144–153
32.
go back to reference Samaddar P, Nandi S, Sarkar DC, Sarkar PP (2014) prediction of the resonant frequency of a circular patch frequency selective structures using artificial neural networks. Indian J Phys 88:397–403CrossRef Samaddar P, Nandi S, Sarkar DC, Sarkar PP (2014) prediction of the resonant frequency of a circular patch frequency selective structures using artificial neural networks. Indian J Phys 88:397–403CrossRef
33.
go back to reference de Araújo WC, Lins HWC, D’Assunção AG, Medeiros JLG, D’Assunção AG (2014) A bioinspired hybrid optimization algorithm for designing broadband frequency selective surfaces. Microw Opt Technol Lett 56:329–333CrossRef de Araújo WC, Lins HWC, D’Assunção AG, Medeiros JLG, D’Assunção AG (2014) A bioinspired hybrid optimization algorithm for designing broadband frequency selective surfaces. Microw Opt Technol Lett 56:329–333CrossRef
34.
go back to reference d’Elia U, Selleri GP, Taddei R (2013) Finite element design of CNT-based multilayer absorbers. COMPEL 32:1929–1942CrossRef d’Elia U, Selleri GP, Taddei R (2013) Finite element design of CNT-based multilayer absorbers. COMPEL 32:1929–1942CrossRef
35.
go back to reference Panda M, Samaddar P, Sarkar PP (2013) Artificial neural network for the analysis and design of a frequency selective surface with SLITS. IJCAES 3:81–83 Panda M, Samaddar P, Sarkar PP (2013) Artificial neural network for the analysis and design of a frequency selective surface with SLITS. IJCAES 3:81–83
36.
go back to reference Anuradha A, Patnaik A, Sinha SN, Mosig JR (2012) Design of customized fractal FSS. APSURSI, ChicagoCrossRef Anuradha A, Patnaik A, Sinha SN, Mosig JR (2012) Design of customized fractal FSS. APSURSI, ChicagoCrossRef
37.
go back to reference Silva PHF, Cruz RMS, D’Assunção AG (2010) Blending PSO and ANN for optimal design of FSS filters with kotch island patch elements. IEEE Trans Magn 46:3010–3013CrossRef Silva PHF, Cruz RMS, D’Assunção AG (2010) Blending PSO and ANN for optimal design of FSS filters with kotch island patch elements. IEEE Trans Magn 46:3010–3013CrossRef
38.
go back to reference Cruz RMS, Silva PHF, D’Assunção AG (2009) Synthesis of crossed dipole frequency selective surfaces using genetic algorithms and artificial neural networks. IJCNN, AtlantaCrossRef Cruz RMS, Silva PHF, D’Assunção AG (2009) Synthesis of crossed dipole frequency selective surfaces using genetic algorithms and artificial neural networks. IJCNN, AtlantaCrossRef
39.
go back to reference Silva PHF, Campos ALPS (2008) Fast and accurate modeling of frequency selective surfaces using a new modular neural network configuration of multilayer perceptrons. IET Microw Antenna 2:503–511CrossRef Silva PHF, Campos ALPS (2008) Fast and accurate modeling of frequency selective surfaces using a new modular neural network configuration of multilayer perceptrons. IET Microw Antenna 2:503–511CrossRef
Metadata
Title
A new efficient approach for fast and accurate design of frequency selective surfaces based on geometry estimation networks
Authors
Sara Moinzad
Ali Abdolali
Publication date
05-02-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2017
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2221-z

Other articles of this Issue 9/2017

Neural Computing and Applications 9/2017 Go to the issue

Premium Partner