Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 7/2015

01-10-2015 | Original Paper

A new graphical representation of water footprint pinch analysis for chemical processes

Authors: Xiaoping Jia, Zhiwei Li, Fang Wang, Dominic C. Y. Foo, Yu Qian

Published in: Clean Technologies and Environmental Policy | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water resource conservation and wastewater minimization are important strategies for the chemical industry. In this work, a graphical technique established for carbon footprint reduction is extended for the analysis of water footprint reduction. Similar to its original variant, this extended water footprint pinch analysis technique is based on the decomposition of total water footprint into external and internal footprint components. A case study on coal-to-methanol process is used to illustrate the proposed technique. Results show that water is mainly consumed in the utility processes and it is possible to achieve a goal for water saving of 16 %. Several practical water saving measurements are suggested to achieve the water reduction target.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Atkins MJ, Morrison AS, Walmsley MRW (2010) Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl Energy 87(3):982–987CrossRef Atkins MJ, Morrison AS, Walmsley MRW (2010) Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl Energy 87(3):982–987CrossRef
go back to reference Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526CrossRef Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526CrossRef
go back to reference Crilly D, Zhelev T (2008) Emissions targeting and planning: an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector. Energy 33(10):1498–1507CrossRef Crilly D, Zhelev T (2008) Emissions targeting and planning: an application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector. Energy 33(10):1498–1507CrossRef
go back to reference Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20CrossRef Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20CrossRef
go back to reference Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86CrossRef Čuček L, Klemeš JJ, Kravanja Z (2014) Objective dimensionality reduction method within multi-objective optimisation considering total footprints. J Clean Prod 71:75–86CrossRef
go back to reference Diamante JAR, Tan RR, Foo DCY, Ng DKS, Aviso KB, Bandyopadhyay S (2014) Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J Clean Prod 71:67–74CrossRef Diamante JAR, Tan RR, Foo DCY, Ng DKS, Aviso KB, Bandyopadhyay S (2014) Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J Clean Prod 71:67–74CrossRef
go back to reference El-Halwagi MM (2012) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Butterworth-Heinemann, London El-Halwagi MM (2012) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Butterworth-Heinemann, London
go back to reference El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35(8):1233–1244CrossRef El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35(8):1233–1244CrossRef
go back to reference Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton
go back to reference Gerbens-Leenes W, Hoekstra A, Meer T (2007) The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. ISESCO Sci Technol Vis 4(5):38–42 Gerbens-Leenes W, Hoekstra A, Meer T (2007) The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. ISESCO Sci Technol Vis 4(5):38–42
go back to reference Ho WS, Khor CS, Hashim H, Macchietto S, Klemeš JJ (2014) SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. Clean Technol Environ Policy 16(5):957–970CrossRef Ho WS, Khor CS, Hashim H, Macchietto S, Klemeš JJ (2014) SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. Clean Technol Environ Policy 16(5):957–970CrossRef
go back to reference Jia XP, Liu CH, Qian Y (2009) Carbon emission pinch analysis for energy planning in chemical industrial park. Mod Chem Ind 29(9):81–85 Jia XP, Liu CH, Qian Y (2009) Carbon emission pinch analysis for energy planning in chemical industrial park. Mod Chem Ind 29(9):81–85
go back to reference Jin ZL, Chen XT, Wang YQ, Liu MS (2013) Heat exchanger network synthesis based on environmental impact minimization. Clean Technol Environ Policy 16(1):183–187CrossRef Jin ZL, Chen XT, Wang YQ, Liu MS (2013) Heat exchanger network synthesis based on environmental impact minimization. Clean Technol Environ Policy 16(1):183–187CrossRef
go back to reference Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Prog 101(8):28–37 Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Prog 101(8):28–37
go back to reference Klemeš JJ (2013) Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Woodhead Publishing, CambridgeCrossRef Klemeš JJ (2013) Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Woodhead Publishing, CambridgeCrossRef
go back to reference Klemeš JJ, Varbanov PS (2013) Process Intensification and Integration: an assessment. Clean Technol Environ Policy 15(3):417–422CrossRef Klemeš JJ, Varbanov PS (2013) Process Intensification and Integration: an assessment. Clean Technol Environ Policy 15(3):417–422CrossRef
go back to reference Lam HL, Varbanov P, Klemeš J (2010) Minimising carbon footprint of regional biomass supply chains. Resour Conserv Recycl 54(5):303–309CrossRef Lam HL, Varbanov P, Klemeš J (2010) Minimising carbon footprint of regional biomass supply chains. Resour Conserv Recycl 54(5):303–309CrossRef
go back to reference Linnhoff B, Hindmarsh E (1983) The pinch design method for heat exchanger networks. Chem Eng Sci 38(5):745–763CrossRef Linnhoff B, Hindmarsh E (1983) The pinch design method for heat exchanger networks. Chem Eng Sci 38(5):745–763CrossRef
go back to reference Luo T, Otto B, Shiao T, Maddocks A (2014) Identifying the global coal industry’s water risks. Cornerstone 2(1):26–31 Luo T, Otto B, Shiao T, Maddocks A (2014) Identifying the global coal industry’s water risks. Cornerstone 2(1):26–31
go back to reference Ooi REH, Foo DCY, Tan RR (2014) Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems. Appl Energy 113:477–487CrossRef Ooi REH, Foo DCY, Tan RR (2014) Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems. Appl Energy 113:477–487CrossRef
go back to reference Pan L, Liu P, Ma L, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energy Policy 48:93–102CrossRef Pan L, Liu P, Ma L, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energy Policy 48:93–102CrossRef
go back to reference Pękala ŁM, Tan RR, Foo DCY, Jeżowski JM (2010) Optimal energy planning models with carbon footprint constraints. Appl Energy 87(6):1903–1910CrossRef Pękala ŁM, Tan RR, Foo DCY, Jeżowski JM (2010) Optimal energy planning models with carbon footprint constraints. Appl Energy 87(6):1903–1910CrossRef
go back to reference Priya GSK, Bandyopadhyay S (2012) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15(5):771–782CrossRef Priya GSK, Bandyopadhyay S (2012) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15(5):771–782CrossRef
go back to reference Shenoy UV (2010) Targeting and design of energy allocation networks for carbon emission reduction. Chem Eng Sci 65(23):6155–6168CrossRef Shenoy UV (2010) Targeting and design of energy allocation networks for carbon emission reduction. Chem Eng Sci 65(23):6155–6168CrossRef
go back to reference Shenoy AU, Shenoy UV (2012) Targeting and design of energy allocation networks with carbon capture and storage. Chem Eng Sci 68(1):313–327CrossRef Shenoy AU, Shenoy UV (2012) Targeting and design of energy allocation networks with carbon capture and storage. Chem Eng Sci 68(1):313–327CrossRef
go back to reference Singhvi A, Shenoy UV (2002) Aggregate planning in supply chains by pinch analysis. Chem Eng Res Des 80(6):597–605CrossRef Singhvi A, Shenoy UV (2002) Aggregate planning in supply chains by pinch analysis. Chem Eng Res Des 80(6):597–605CrossRef
go back to reference Smith R (2005) Chemical process design and integration. Wiley, New York Smith R (2005) Chemical process design and integration. Wiley, New York
go back to reference Tahara K, Sagisaka M, Ozawa T, Yamaguchi K, Inaba A (2005) Comparison of “CO2 efficiency” between company and industry. J Clean Prod 13(13–14):1301–1308CrossRef Tahara K, Sagisaka M, Ozawa T, Yamaguchi K, Inaba A (2005) Comparison of “CO2 efficiency” between company and industry. J Clean Prod 13(13–14):1301–1308CrossRef
go back to reference Tan RR, Foo DCY (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32(8):1422–1429CrossRef Tan RR, Foo DCY (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32(8):1422–1429CrossRef
go back to reference Tan RR, Foo DCY, Aviso KB, Ng DKS (2009) The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl Energy 86(5):605–609CrossRef Tan RR, Foo DCY, Aviso KB, Ng DKS (2009) The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl Energy 86(5):605–609CrossRef
go back to reference Tjan W, Tan RR, Foo DCY (2010) A graphical representation of carbon footprint reduction for chemical processes. J Clean Prod 18(9):848–856CrossRef Tjan W, Tan RR, Foo DCY (2010) A graphical representation of carbon footprint reduction for chemical processes. J Clean Prod 18(9):848–856CrossRef
go back to reference Varbanov PS, Seferlis P (2014) Process innovation through integration approaches at multiple scales: a perspective. Clean Technol Environ Policy 16(7):1229–1234CrossRef Varbanov PS, Seferlis P (2014) Process innovation through integration approaches at multiple scales: a perspective. Clean Technol Environ Policy 16(7):1229–1234CrossRef
go back to reference Walmsley MRW, Walmsley TG, Atkins MJ, Kamp PJJ, Neale JR (2014) Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050. Appl Energy 135:656–665CrossRef Walmsley MRW, Walmsley TG, Atkins MJ, Kamp PJJ, Neale JR (2014) Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050. Appl Energy 135:656–665CrossRef
go back to reference Wan Alwi SR, Tin OS, Rozali NEM, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on power pinch analysis. Clean Technol Environ Policy 15(3):459–472CrossRef Wan Alwi SR, Tin OS, Rozali NEM, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on power pinch analysis. Clean Technol Environ Policy 15(3):459–472CrossRef
go back to reference Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef
go back to reference Xie K, Li W, Zhao W (2010) Coal chemical industry and its sustainable development in China. Energy 35(11):4349–4355CrossRef Xie K, Li W, Zhao W (2010) Coal chemical industry and its sustainable development in China. Energy 35(11):4349–4355CrossRef
Metadata
Title
A new graphical representation of water footprint pinch analysis for chemical processes
Authors
Xiaoping Jia
Zhiwei Li
Fang Wang
Dominic C. Y. Foo
Yu Qian
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Clean Technologies and Environmental Policy / Issue 7/2015
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-0921-1

Other articles of this Issue 7/2015

Clean Technologies and Environmental Policy 7/2015 Go to the issue