Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 7/2015

01-10-2015 | Original Paper

Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor

Authors: Saeedeh Imani Moqadam, Mojtaba Mirdrikvand, Behrooz Roozbehani, Abdolreza Kharaghani, Mohammad Reza Shishehsaz

Published in: Clean Technologies and Environmental Policy | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Catalytic degradation of polystyrene (PS) at ambient pressure was investigated in this study. Samples of PS and catalyst were mixed in a semi-batch reactor. Experiments were carried out in a Pyrex reactor in different conditions, taking temperature and catalyst/PS mass ratio as variables to determine the kinetic parameters. The results indicated that increasing the temperature causes conversion increase. The products of the degradation mostly consist of liquid, gas, and solid residue. The pyrolysis of PS was examined as an effective way to recycle this polymer and recover its styrene monomer. Based on the weight loss of polymer sample, the reaction kinetic parameters are calculated and discussed in the paper. In addition, the effects of temperature and catalyst/polymer ratio were examined, comparing its result to the gaseous and liquid pyrolysis products. Since the oil product contained a high percentage of styrene monomer (>80 %), it is possible to use it directly for the reproduction of the polymer. The experiments indicated a unique catalytic performance for degradation of PS with selectivity to aromatics more than 99 %. The products contained styrene, as the major product, and ethyl benzene, indene, and propyl benzene to some amounts in the liquid. Order of reaction, pre-exponential factor and activation energies were determined using the nth order model technique method. According to the results E (activation energy) and A 0 (Pre-exponential factor) are as the following 1.1326, 194 (kJ mol−1) and 3.2668 × 1014 min−1, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achilias DS, Kanellopoulou I, Megalokonomos P, Antonakou E, Lappas AA (2007) Chemical recycling of polystyrene by pyrolysis: potential use of the liquid product for the reproduction of polymer. Macromol Mater Eng 292(8):923–934CrossRef Achilias DS, Kanellopoulou I, Megalokonomos P, Antonakou E, Lappas AA (2007) Chemical recycling of polystyrene by pyrolysis: potential use of the liquid product for the reproduction of polymer. Macromol Mater Eng 292(8):923–934CrossRef
go back to reference Anders G, Burkhardt I, Illgen U, Schulz IW, Scheve J (1990) The influence of HZSM-5 zeolite on the product composition after cracking of high boiling hydrocarbon fractions. Appl Catal 62(1):271–280CrossRef Anders G, Burkhardt I, Illgen U, Schulz IW, Scheve J (1990) The influence of HZSM-5 zeolite on the product composition after cracking of high boiling hydrocarbon fractions. Appl Catal 62(1):271–280CrossRef
go back to reference Anderson D, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54(159):253–260CrossRef Anderson D, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54(159):253–260CrossRef
go back to reference Armaroli T, Trombetta M, Alejandre AG, Solisb JR, Busca G (2000) FTIR study of the interaction of some branched aliphatic molecules with the external and internal sites of H-ZSM5 zeolite. Chem Phys Lett Chem Phys 2:3341CrossRef Armaroli T, Trombetta M, Alejandre AG, Solisb JR, Busca G (2000) FTIR study of the interaction of some branched aliphatic molecules with the external and internal sites of H-ZSM5 zeolite. Chem Phys Lett Chem Phys 2:3341CrossRef
go back to reference Audisio G, Bertini F, Beltrame PL, Carniti P (1990) Catalytic degradation of polymers: Part III—degradation of polystyrene. Polym Degrad Stab 29(2):191–200CrossRef Audisio G, Bertini F, Beltrame PL, Carniti P (1990) Catalytic degradation of polymers: Part III—degradation of polystyrene. Polym Degrad Stab 29(2):191–200CrossRef
go back to reference Bagri R, Williams PT (2004) Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis. Energy 28:31–44 Bagri R, Williams PT (2004) Hydrocarbon gases and oils from the recycling of polystyrene waste by catalytic pyrolysis. Energy 28:31–44
go back to reference Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng 196:377–391CrossRef Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng 196:377–391CrossRef
go back to reference Bockhorn H, Hornung A, Hornung U (1998a) Gasification of polystyrene as initial step in incineration, fires, or smoldering of plastics. Symposium (international) on Combustion, pp 1343–1349 Bockhorn H, Hornung A, Hornung U (1998a) Gasification of polystyrene as initial step in incineration, fires, or smoldering of plastics. Symposium (international) on Combustion, pp 1343–1349
go back to reference Bockhorn H, Hornung A, Hornung U (1998b) Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrol 46(1):1–13CrossRef Bockhorn H, Hornung A, Hornung U (1998b) Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrol 46(1):1–13CrossRef
go back to reference Bockhorn H, Hentschel J, Hornung A, Hornung U (1999) Environmental engineering: stepwise pyrolysis of plastic waste. Chem Eng Sci 54(15):3043–3051CrossRef Bockhorn H, Hentschel J, Hornung A, Hornung U (1999) Environmental engineering: stepwise pyrolysis of plastic waste. Chem Eng Sci 54(15):3043–3051CrossRef
go back to reference Bouster C, Vermande P, Veron J (1980) Study of the pyrolysis of polystyrenes: I. Kinetics of thermal decomposition. J Anal Appl Pyrol 1(4):297–313CrossRef Bouster C, Vermande P, Veron J (1980) Study of the pyrolysis of polystyrenes: I. Kinetics of thermal decomposition. J Anal Appl Pyrol 1(4):297–313CrossRef
go back to reference Carniti P, Beltrame PL, Massimo A, Gervasini A, Audisio G (1991) PolyStyrene thermodegradation kinetics of formation of volatile products. Ind Eng Chem Res 30:1624–1629CrossRef Carniti P, Beltrame PL, Massimo A, Gervasini A, Audisio G (1991) PolyStyrene thermodegradation kinetics of formation of volatile products. Ind Eng Chem Res 30:1624–1629CrossRef
go back to reference De la Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal B 19(3):305–311CrossRef De la Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal B 19(3):305–311CrossRef
go back to reference Domingo V, Javier F (2008) Analytical strategies for the quality assessment of recycled high-impact polystyrene (HIPS) Domingo V, Javier F (2008) Analytical strategies for the quality assessment of recycled high-impact polystyrene (HIPS)
go back to reference Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Zhang MO (1995) Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind Eng Chem Res 34:4514–4519CrossRef Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Zhang MO (1995) Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind Eng Chem Res 34:4514–4519CrossRef
go back to reference Horvat N (1999) Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel 78:459–470CrossRef Horvat N (1999) Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel 78:459–470CrossRef
go back to reference Kaminsky W (1991) Recycling of polymeric materials by pyrolysis. In: Makromolekulare Chemie. Macromolecular Symposia, vol. 48, No. 1, Hüthig & Wepf Verlag¸ pp 381–393 Kaminsky W (1991) Recycling of polymeric materials by pyrolysis. In: Makromolekulare Chemie. Macromolecular Symposia, vol. 48, No. 1, Hüthig & Wepf Verlag¸ pp 381–393
go back to reference Kaminsky W, Predel M, Sadiki A (2004) Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab 85(3):1045–1050CrossRef Kaminsky W, Predel M, Sadiki A (2004) Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab 85(3):1045–1050CrossRef
go back to reference Karaduman A (2002) Pyrolysis of polystyrene plastic wastes with some organic compounds for enhancing styrene yield. Energy Sources 24(7):667–674CrossRef Karaduman A (2002) Pyrolysis of polystyrene plastic wastes with some organic compounds for enhancing styrene yield. Energy Sources 24(7):667–674CrossRef
go back to reference Kim JS, Lee WY, Lee SB, Kim SB, Choi MJ (2003) Degradation of polystyrene waste over base promoted Fe catalysts. Catal Tod 87:59–68CrossRef Kim JS, Lee WY, Lee SB, Kim SB, Choi MJ (2003) Degradation of polystyrene waste over base promoted Fe catalysts. Catal Tod 87:59–68CrossRef
go back to reference Kiran N, Ekinci E, Snape CE (2000) Recyling of plastic wastes via pyrolysis. Resour Conserv Recycl 29(4):273–283CrossRef Kiran N, Ekinci E, Snape CE (2000) Recyling of plastic wastes via pyrolysis. Resour Conserv Recycl 29(4):273–283CrossRef
go back to reference Kraines S, Shigeoka H, Komiyama H (2003) A system tradeoff model for processing options for household plastic waste. Clean Technol Environ Policy 4(4):204–216CrossRef Kraines S, Shigeoka H, Komiyama H (2003) A system tradeoff model for processing options for household plastic waste. Clean Technol Environ Policy 4(4):204–216CrossRef
go back to reference Lee SY, Yoon JH, Kim JR, Park DW (2002) Degradation of polystyrene using clinoptilolite catalysts. J Anal Appl Pyrol 64(1):71–83CrossRef Lee SY, Yoon JH, Kim JR, Park DW (2002) Degradation of polystyrene using clinoptilolite catalysts. J Anal Appl Pyrol 64(1):71–83CrossRef
go back to reference Liu Y, Qian J, Wang J (2000) Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol 63(1):45–55CrossRef Liu Y, Qian J, Wang J (2000) Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol 63(1):45–55CrossRef
go back to reference Miskolczi N, Nagy R (2012) Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104:96–104CrossRef Miskolczi N, Nagy R (2012) Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104:96–104CrossRef
go back to reference Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S (1993) Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene. Ind Eng Chem Res 32:3112–3116CrossRef Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S (1993) Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene. Ind Eng Chem Res 32:3112–3116CrossRef
go back to reference Paradela F, Pinto F, Gulyurtlu I, Cabrita I, Lapa N (2009) Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Environ Policy 11(1):115–122CrossRef Paradela F, Pinto F, Gulyurtlu I, Cabrita I, Lapa N (2009) Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Environ Policy 11(1):115–122CrossRef
go back to reference Roozbehani B, Anvaripour B, Esfahan ZM, Mirdrikvand M, Moqadam SI (2014) Effect of temperature and catalyst loading on product yield in catalytic cracking of high density polyethylene (HDPE). Chem Technol Fuels Oils 49(6):508–516CrossRef Roozbehani B, Anvaripour B, Esfahan ZM, Mirdrikvand M, Moqadam SI (2014) Effect of temperature and catalyst loading on product yield in catalytic cracking of high density polyethylene (HDPE). Chem Technol Fuels Oils 49(6):508–516CrossRef
go back to reference Sakaki SA, Roozbehani B, Shishesaz M, Abdollahkhani N (2014) Catalytic degradation of the mixed polyethylene and polypropylene into middle distillate products. Clean Technol Environ Policy 16(5):901–910CrossRef Sakaki SA, Roozbehani B, Shishesaz M, Abdollahkhani N (2014) Catalytic degradation of the mixed polyethylene and polypropylene into middle distillate products. Clean Technol Environ Policy 16(5):901–910CrossRef
go back to reference Sakata Y, Uddin MA, Muto A (1999) Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Anal Appl Pyrol 51:135–155CrossRef Sakata Y, Uddin MA, Muto A (1999) Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Anal Appl Pyrol 51:135–155CrossRef
go back to reference Serrano DP, Aguado J, Escola JM (2000) Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: comparison with thermal cracking. Appl Catal B 25(2):181–189CrossRef Serrano DP, Aguado J, Escola JM (2000) Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: comparison with thermal cracking. Appl Catal B 25(2):181–189CrossRef
go back to reference Simard YDM, Kamal MR, Cooper DG (1995) Thermolysis of polystyrene. J Appl Polym Sci 58(5):843–851CrossRef Simard YDM, Kamal MR, Cooper DG (1995) Thermolysis of polystyrene. J Appl Polym Sci 58(5):843–851CrossRef
go back to reference Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A (2000) Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Tod 62:67–75CrossRef Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A (2000) Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Tod 62:67–75CrossRef
go back to reference Venuto P, Landis P (1968) Zeolite catalysis in synthetic organic chemistry. Adv Catal 18:259 Venuto P, Landis P (1968) Zeolite catalysis in synthetic organic chemistry. Adv Catal 18:259
go back to reference Westerhout RWJ, Waanders J, Kuipers JAM, Van Swaaij WPM (1997) Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind Eng Chem Res 36(6):1955–1964CrossRef Westerhout RWJ, Waanders J, Kuipers JAM, Van Swaaij WPM (1997) Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind Eng Chem Res 36(6):1955–1964CrossRef
go back to reference Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 13(1):188–196CrossRef Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 13(1):188–196CrossRef
Metadata
Title
Polystyrene pyrolysis using silica-alumina catalyst in fluidized bed reactor
Authors
Saeedeh Imani Moqadam
Mojtaba Mirdrikvand
Behrooz Roozbehani
Abdolreza Kharaghani
Mohammad Reza Shishehsaz
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Clean Technologies and Environmental Policy / Issue 7/2015
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-0899-8

Other articles of this Issue 7/2015

Clean Technologies and Environmental Policy 7/2015 Go to the issue