Skip to main content
Erschienen in: Chemistry and Technology of Fuels and Oils 6/2014

01.01.2014

Effect of Temperature and Catalyst Loading on Product Yield in Catalytic Cracking of High Density Polyethylene (HDPE)

verfasst von: Behrooz Roozbehani, Bagher Anvaripour, Zahra Maghareh Esfahan, Mojtaba Mirdrikvand, Saeedeh Imani Moqadam

Erschienen in: Chemistry and Technology of Fuels and Oils | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have studied the effect of temperature and catalyst loading on the product yield in cracking of high density polyethylene (HDPE). We have identified the optimal temperature and catalyst loading that results in maximum conversion. We have constructed a kinetic model of the process and have determined the activation energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sandeep Sarathy, Michael D. Wallis, and Suresh K. Bhatia, “Effect of catalyst loading on kinetics of catalytic degradation of high density polyethylene :Experiment and modelling,” Chemical Engineering Science, 65, 796–806 (2010).CrossRef Sandeep Sarathy, Michael D. Wallis, and Suresh K. Bhatia, “Effect of catalyst loading on kinetics of catalytic degradation of high density polyethylene :Experiment and modelling,” Chemical Engineering Science, 65, 796–806 (2010).CrossRef
2.
Zurück zum Zitat Ta-Tung Wei, Ken-Jer Wu, Sheau-Long Lee, and Yeuh-Hui Lin, “Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels,” Resources, Conservation and Recycling, 54, 952–961 (2010).CrossRef Ta-Tung Wei, Ken-Jer Wu, Sheau-Long Lee, and Yeuh-Hui Lin, “Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels,” Resources, Conservation and Recycling, 54, 952–961 (2010).CrossRef
3.
Zurück zum Zitat Kyong-Hwan Lee and Dae-Hyun Shin, “Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction,” Waste Management, 27, 168–176 (2007).CrossRef Kyong-Hwan Lee and Dae-Hyun Shin, “Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction,” Waste Management, 27, 168–176 (2007).CrossRef
4.
Zurück zum Zitat A. Garforth, S. Fiddy, Y. H. Lin, and A. Ghanbari Sikhali, Thermochimica Acta, 294, 59-65 (1997).CrossRef A. Garforth, S. Fiddy, Y. H. Lin, and A. Ghanbari Sikhali, Thermochimica Acta, 294, 59-65 (1997).CrossRef
5.
Zurück zum Zitat D. Park et al., “Catalytic degradation of polyethylene over catalysis,” Polymer Degradation and Stability, 65, 193–198 (1999).CrossRef D. Park et al., “Catalytic degradation of polyethylene over catalysis,” Polymer Degradation and Stability, 65, 193–198 (1999).CrossRef
6.
Zurück zum Zitat Shuguang Zhang, Yulong Zhang, John W. Tierney, and Irving Wender, “Hydroisomerization of normal hexadecane with platinum-promoted tungstate-modified zirconia catalyst,” Applied Catalysis A: General, 193, 155–171 (2000).CrossRef Shuguang Zhang, Yulong Zhang, John W. Tierney, and Irving Wender, “Hydroisomerization of normal hexadecane with platinum-promoted tungstate-modified zirconia catalyst,” Applied Catalysis A: General, 193, 155–171 (2000).CrossRef
7.
Zurück zum Zitat A. Buekens and H. Huang, “Catalytic plastics cracking for recovery of gasoline range hydrocarbons from plastic wastes,” Resources, Conservation and Recycling, 23, 163–181 (1998).CrossRef A. Buekens and H. Huang, “Catalytic plastics cracking for recovery of gasoline range hydrocarbons from plastic wastes,” Resources, Conservation and Recycling, 23, 163–181 (1998).CrossRef
8.
Zurück zum Zitat Zhibo Zhang, Nishio Suehiro et al., “Thermal and chemical recycle of waste polymers,” Catalysis Today, 29, 303–308 (1996).CrossRef Zhibo Zhang, Nishio Suehiro et al., “Thermal and chemical recycle of waste polymers,” Catalysis Today, 29, 303–308 (1996).CrossRef
9.
Zurück zum Zitat A. Garforth et al., “Production of hydrocarbons by catalytic degradation of HDPE in a laboratory fluidised bed reactor,” Applied Catalysis A:General, 169, 331–342 (1988).CrossRef A. Garforth et al., “Production of hydrocarbons by catalytic degradation of HDPE in a laboratory fluidised bed reactor,” Applied Catalysis A:General, 169, 331–342 (1988).CrossRef
10.
Zurück zum Zitat Jale Yanik et al., Polymer Degradation and Stability, 37, 335–345 (2001).CrossRef Jale Yanik et al., Polymer Degradation and Stability, 37, 335–345 (2001).CrossRef
11.
Zurück zum Zitat D. Park et al., “Catalytic degradation of polyethylene over catalysis,” Polymer Degradation and Stability, 65, 193–198 (1999).CrossRef D. Park et al., “Catalytic degradation of polyethylene over catalysis,” Polymer Degradation and Stability, 65, 193–198 (1999).CrossRef
12.
Zurück zum Zitat Andrew Peacock, Handbook of Polyethylene, Exon Chemical Company (2000), pp. 1–25, 43–83, 123–190, 375–400, 509–515. Andrew Peacock, Handbook of Polyethylene, Exon Chemical Company (2000), pp. 1–25, 43–83, 123–190, 375–400, 509–515.
13.
Zurück zum Zitat M. Azhar Uddin,Yusaka Sakata, Akinori Muto et al., Microporous and Mesaporous Material, 21, 557–564 (1998).CrossRef M. Azhar Uddin,Yusaka Sakata, Akinori Muto et al., Microporous and Mesaporous Material, 21, 557–564 (1998).CrossRef
14.
Zurück zum Zitat Z. Gao, I. Amasaki, and M. Nakada, “A thermogravimetric study of thermal degradation of polyethylene,” Journal of Analytical and Applied Pyrolysis, 67, 1–6 (2003).CrossRef Z. Gao, I. Amasaki, and M. Nakada, “A thermogravimetric study of thermal degradation of polyethylene,” Journal of Analytical and Applied Pyrolysis, 67, 1–6 (2003).CrossRef
15.
Zurück zum Zitat Weibing Ding, Jing Liang, and Larry L. Anderson, Fuel Processing Technology, 51, 217–262 (1997).CrossRef Weibing Ding, Jing Liang, and Larry L. Anderson, Fuel Processing Technology, 51, 217–262 (1997).CrossRef
16.
Zurück zum Zitat Oh Sang Woo, Nancy Ayala, and Linda J. Broadbelt, “Mechanistic interpretation of base catalyzed depolymerization of polystyrene,” Catalysis Today, 55, 161–171 (2000). Oh Sang Woo, Nancy Ayala, and Linda J. Broadbelt, “Mechanistic interpretation of base catalyzed depolymerization of polystyrene,” Catalysis Today, 55, 161–171 (2000).
17.
Zurück zum Zitat H. Bockhorn et al., “Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurement,” Journal of Analytical and Applied Pyrolysis, 50, 77–101 (1999).CrossRef H. Bockhorn et al., “Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurement,” Journal of Analytical and Applied Pyrolysis, 50, 77–101 (1999).CrossRef
18.
Zurück zum Zitat Y. Lin et al., “Catalytic conversion of polyolefins to chemicals and fuels over various cracking catalysts,” Energy & Fuels, 12, 767–774 (1998).CrossRef Y. Lin et al., “Catalytic conversion of polyolefins to chemicals and fuels over various cracking catalysts,” Energy & Fuels, 12, 767–774 (1998).CrossRef
19.
Zurück zum Zitat N. Kiran, E. Ekinici, C. E. Spnape, Resources, Conservation and Recycling, 58, 273–283 (2000).CrossRef N. Kiran, E. Ekinici, C. E. Spnape, Resources, Conservation and Recycling, 58, 273–283 (2000).CrossRef
20.
Zurück zum Zitat Suat Ucar , Selhan Karayildirim, and Jale Yanik, “Conversion of polymer to fuels in a refinery stream,” Polymer Degradation and Stability, 75, 161–171 (2002).CrossRef Suat Ucar , Selhan Karayildirim, and Jale Yanik, “Conversion of polymer to fuels in a refinery stream,” Polymer Degradation and Stability, 75, 161–171 (2002).CrossRef
21.
Zurück zum Zitat L. Rong and R. L. White, “Effect of catalyst acidity and HZSM-5 channel volume on the catalytic cracking of PE,” Journal of Applied Polymer Science, 58, 1151–1159 (1995).CrossRef L. Rong and R. L. White, “Effect of catalyst acidity and HZSM-5 channel volume on the catalytic cracking of PE,” Journal of Applied Polymer Science, 58, 1151–1159 (1995).CrossRef
Metadaten
Titel
Effect of Temperature and Catalyst Loading on Product Yield in Catalytic Cracking of High Density Polyethylene (HDPE)
verfasst von
Behrooz Roozbehani
Bagher Anvaripour
Zahra Maghareh Esfahan
Mojtaba Mirdrikvand
Saeedeh Imani Moqadam
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Chemistry and Technology of Fuels and Oils / Ausgabe 6/2014
Print ISSN: 0009-3092
Elektronische ISSN: 1573-8310
DOI
https://doi.org/10.1007/s10553-014-0477-5

Weitere Artikel der Ausgabe 6/2014

Chemistry and Technology of Fuels and Oils 6/2014 Zur Ausgabe