Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2008

01-10-2008

A New Model for Inverse Hall-Petch Relation of Nanocrystalline Materials

Authors: Ali Shafiei Mohammadabadi, Kamran Dehghani

Published in: Journal of Materials Engineering and Performance | Issue 5/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present article, a new model for inverse Hall-Petch relation in nanocrystalline materials has been proposed. It is assumed that lattice distortion along grain boundaries can cause internal stresses and high internal stresses along grain boundaries can promote the grain boundary yielding. The designed model was then verified using the nanocrystalline-copper data. The minimum grain size for inverse Hall-Petch relation is determined to be about 11 nm for Cu.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference C.A. Schuh, T.G. Nieh, H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater, 2003, vol. 51, pp. 431–443CrossRef C.A. Schuh, T.G. Nieh, H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater, 2003, vol. 51, pp. 431–443CrossRef
2.
go back to reference C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Mater, 2002, vol. 46, pp. 735–740CrossRef C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Mater, 2002, vol. 46, pp. 735–740CrossRef
3.
go back to reference F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, NanoStruct.Mater, 1999, vol. 11, pp. 343–350CrossRef F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, NanoStruct.Mater, 1999, vol. 11, pp. 343–350CrossRef
4.
go back to reference A.A. Fedorov, M.Yu. Gutkin, I.A. Ovid’ko, Triple junction diffusion and plastic flow in fine-grained materials, Scripta Mater, 2002, vol. 47, pp. 51–55CrossRef A.A. Fedorov, M.Yu. Gutkin, I.A. Ovid’ko, Triple junction diffusion and plastic flow in fine-grained materials, Scripta Mater, 2002, vol. 47, pp. 51–55CrossRef
5.
go back to reference R. A. Masumura, P. M. Hazzledine, C. S. Pande, Yield stress of fine grained materials, Acta mater. 1998, vol. 46, pp: 4527–4534CrossRef R. A. Masumura, P. M. Hazzledine, C. S. Pande, Yield stress of fine grained materials, Acta mater. 1998, vol. 46, pp: 4527–4534CrossRef
6.
go back to reference D.A. Konstantinidis, E.C. Aifantis, On the “Anomalous” hardness of nanocrystalline materials, NanoStruct.Mater, 1998, vol. 10, pp. 1111–1118CrossRef D.A. Konstantinidis, E.C. Aifantis, On the “Anomalous” hardness of nanocrystalline materials, NanoStruct.Mater, 1998, vol. 10, pp. 1111–1118CrossRef
7.
go back to reference Xiang Qing, Guo Xingming, The scale effect on the yield strength of nanocrystalline materials, Int. J. Solids Struct.,2006, vol. 43, pp. 7793–7799CrossRef Xiang Qing, Guo Xingming, The scale effect on the yield strength of nanocrystalline materials, Int. J. Solids Struct.,2006, vol. 43, pp. 7793–7799CrossRef
8.
go back to reference Hans Conrad, Jagdish Narayan, On the grain size softening in nanocrystalline materials, Scripta mater, 2000, vol. 42, pp. 1025–1030CrossRef Hans Conrad, Jagdish Narayan, On the grain size softening in nanocrystalline materials, Scripta mater, 2000, vol. 42, pp. 1025–1030CrossRef
9.
go back to reference M.P. Phaniraj, M.J.N.V. Prasad, A.H. Chokshi, Grain-size distribution effects in plastic flow and failure, Mater. Sci. Eng. A, 2007, vol. 463, pp. 231–237CrossRef M.P. Phaniraj, M.J.N.V. Prasad, A.H. Chokshi, Grain-size distribution effects in plastic flow and failure, Mater. Sci. Eng. A, 2007, vol. 463, pp. 231–237CrossRef
10.
go back to reference D.V. Bachurin, A.A. Nazarov, O.A. Shenderova, D.W. Brenner, Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials, Mater. Sci. Eng. A, 2003, vol. 359, pp. 247–252CrossRef D.V. Bachurin, A.A. Nazarov, O.A. Shenderova, D.W. Brenner, Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials, Mater. Sci. Eng. A, 2003, vol. 359, pp. 247–252CrossRef
11.
go back to reference T.G. Nieha, J.G. Wang, Hall–Petch relationship in nanocrystalline Ni and Be–B alloys, Intermetallics, 2005, vol. 13, pp. 377–385CrossRef T.G. Nieha, J.G. Wang, Hall–Petch relationship in nanocrystalline Ni and Be–B alloys, Intermetallics, 2005, vol. 13, pp. 377–385CrossRef
12.
go back to reference A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, A. K. Mukherjee, Advanced mechanical properties of pure titanium with ultrafine grained structure, Scripta mater, 2001, vol. 45, pp. 747–752CrossRef A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, A. K. Mukherjee, Advanced mechanical properties of pure titanium with ultrafine grained structure, Scripta mater, 2001, vol. 45, pp. 747–752CrossRef
13.
go back to reference N. Krasilnikov, W. Lojkowski, Z. Pakiela, R. Valiev, Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation, Mater. Sci. Eng A, 2005, vol. 397, pp. 330–337CrossRef N. Krasilnikov, W. Lojkowski, Z. Pakiela, R. Valiev, Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation, Mater. Sci. Eng A, 2005, vol. 397, pp. 330–337CrossRef
14.
go back to reference E.V. Kozlov, A.N. Zhdanov, N.A. Popova, E.E. Pekarskaya, N.A. Koneva, Subgrain structure and internal stress fields in UFG materials: problem of Hall–Petch relation, Mater. Sci. Eng A, 2004, vol. 387–389, pp. 789–794CrossRef E.V. Kozlov, A.N. Zhdanov, N.A. Popova, E.E. Pekarskaya, N.A. Koneva, Subgrain structure and internal stress fields in UFG materials: problem of Hall–Petch relation, Mater. Sci. Eng A, 2004, vol. 387–389, pp. 789–794CrossRef
15.
go back to reference H. S. Kim, Y. Estrin, M. B. Bush, Plastic deformation behaviour of fine-grained materials, Acta mater, 2000, vol. 48, pp. 493–504CrossRef H. S. Kim, Y. Estrin, M. B. Bush, Plastic deformation behaviour of fine-grained materials, Acta mater, 2000, vol. 48, pp. 493–504CrossRef
16.
go back to reference H. H. Fu, D. J. Benson, M. A. Meyers, Analytical and computational description of effect of grain size on yield stress of metals, Acta mater, 2001, vol. 49, pp. 2567–2582CrossRef H. H. Fu, D. J. Benson, M. A. Meyers, Analytical and computational description of effect of grain size on yield stress of metals, Acta mater, 2001, vol. 49, pp. 2567–2582CrossRef
17.
go back to reference Hyoung Seop Kim, A composite model for mechanical properties of nanocrystalline materials, Scripta Materialia, 1998, vol. 39, pp. 1057–1061CrossRef Hyoung Seop Kim, A composite model for mechanical properties of nanocrystalline materials, Scripta Materialia, 1998, vol. 39, pp. 1057–1061CrossRef
18.
go back to reference D.H Warner, F Sansoz, J.F Molinari, Atomistic based continuum investigation of plastic deformation in nanocrystalline copper, Int. J. Plasticity, 2006, vol. 22, pp. 754–774CrossRef D.H Warner, F Sansoz, J.F Molinari, Atomistic based continuum investigation of plastic deformation in nanocrystalline copper, Int. J. Plasticity, 2006, vol. 22, pp. 754–774CrossRef
19.
go back to reference Yuntian T., Zhu. Terence, G. Langdon, Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials, Mater. Sci. Eng A, 2005, vol. 409, pp. 234–242CrossRef Yuntian T., Zhu. Terence, G. Langdon, Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials, Mater. Sci. Eng A, 2005, vol. 409, pp. 234–242CrossRef
20.
go back to reference Torre F.D., Swygenhoven H.V, Victoria M., Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mater, 2002, vol. 50, pp. 3957–3970CrossRef Torre F.D., Swygenhoven H.V, Victoria M., Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mater, 2002, vol. 50, pp. 3957–3970CrossRef
21.
go back to reference Kumar K.S., Suresh S., Chisolm M.F., Horton J.A., Wang P., Deformation of electrodeposited nanocrystalline nickel, Acta Mater, 2003, vol. 51, pp. 387–405CrossRef Kumar K.S., Suresh S., Chisolm M.F., Horton J.A., Wang P., Deformation of electrodeposited nanocrystalline nickel, Acta Mater, 2003, vol. 51, pp. 387–405CrossRef
22.
go back to reference Swygenhoven H.V., Spaczer M., Caro A., Role of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study, NanoStruct.Mater, 1998, vol. 10, pp. 819–828CrossRef Swygenhoven H.V., Spaczer M., Caro A., Role of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study, NanoStruct.Mater, 1998, vol. 10, pp. 819–828CrossRef
23.
go back to reference H. Van Swygenhoven, A. Caro, D. Farkas, A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation, Mater. Sci. Eng A, 2001, vol. 309–310, pp. 440–444CrossRef H. Van Swygenhoven, A. Caro, D. Farkas, A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation, Mater. Sci. Eng A, 2001, vol. 309–310, pp. 440–444CrossRef
24.
go back to reference Y.J. Wei, L.Anand, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids, 2004, vol. 52, pp. 2587–2616CrossRef Y.J. Wei, L.Anand, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids, 2004, vol. 52, pp. 2587–2616CrossRef
25.
go back to reference G.J. Fan H. Choo P.K. Liaw E.J. Lavernia, A model for the inverse Hall–Petch relation of nanocrystalline materials, Mater. Sci. Eng A, 2005, vol. 409, pp. 243–248CrossRef G.J. Fan H. Choo P.K. Liaw E.J. Lavernia, A model for the inverse Hall–Petch relation of nanocrystalline materials, Mater. Sci. Eng A, 2005, vol. 409, pp. 243–248CrossRef
26.
go back to reference Lnag Zhou, Xiuqin Wei, Naigen Zhou, Lattice distortion and thermal stability of nano-crystalline copper, Comput, Mater. Sci, 2004, vol. 30, pp. 314–319CrossRef Lnag Zhou, Xiuqin Wei, Naigen Zhou, Lattice distortion and thermal stability of nano-crystalline copper, Comput, Mater. Sci, 2004, vol. 30, pp. 314–319CrossRef
27.
go back to reference E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta mater, 1998, vol. 46, pp. 5611–5626CrossRef E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta mater, 1998, vol. 46, pp. 5611–5626CrossRef
28.
go back to reference S. Namilae, N. Chandra, T.G. Nieh, Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals, Scripta Materialia, 2002, vol. 46, pp. 49–54CrossRef S. Namilae, N. Chandra, T.G. Nieh, Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals, Scripta Materialia, 2002, vol. 46, pp. 49–54CrossRef
29.
go back to reference S. Takeuchi, The mechanism of the inverse Hall–Petch relation of nanocrystals, Scripta mater, 2001, vol. 44, pp.1483–1487CrossRef S. Takeuchi, The mechanism of the inverse Hall–Petch relation of nanocrystals, Scripta mater, 2001, vol. 44, pp.1483–1487CrossRef
30.
go back to reference K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, Inverse Hall–Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Mater. Sci. Eng. A, 2007, vol. 452–453, pp. 462–468CrossRef K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, Inverse Hall–Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Mater. Sci. Eng. A, 2007, vol. 452–453, pp. 462–468CrossRef
31.
go back to reference M. Zhao, J.C. Li, Q. Jiang, Hall–Petch relationship in nanometer size range, J. Alloys Compd, 2003, vol. 361, pp. 160–164CrossRef M. Zhao, J.C. Li, Q. Jiang, Hall–Petch relationship in nanometer size range, J. Alloys Compd, 2003, vol. 361, pp. 160–164CrossRef
32.
go back to reference P .G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater,1997, vol. 45, pp. 4019–4025CrossRef P .G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater,1997, vol. 45, pp. 4019–4025CrossRef
33.
go back to reference Fougere GE, Weertman JR, Siegel RW, Kim S., Grain-size dependent hardening and softening of nanocrystalline Cu and Pd, Scr Metall Mater,1992, Vol 26, pp. 1879–1883CrossRef Fougere GE, Weertman JR, Siegel RW, Kim S., Grain-size dependent hardening and softening of nanocrystalline Cu and Pd, Scr Metall Mater,1992, Vol 26, pp. 1879–1883CrossRef
34.
go back to reference Nieman GW, Weertman JR, Siegel RW. Mechanical Behavior of Nanocrystalline Cu and Pd, J Mater Res, 1991, vol. 6, pp.1012–1027CrossRef Nieman GW, Weertman JR, Siegel RW. Mechanical Behavior of Nanocrystalline Cu and Pd, J Mater Res, 1991, vol. 6, pp.1012–1027CrossRef
35.
go back to reference Chokski AH, Rosen A, Karch J, Gleiter H., On the validity of the hall–petch relationship in nanocrystalline materials, Scr Metall, 1989, vol. 23, pp. 1679–1683CrossRef Chokski AH, Rosen A, Karch J, Gleiter H., On the validity of the hall–petch relationship in nanocrystalline materials, Scr Metall, 1989, vol. 23, pp. 1679–1683CrossRef
36.
go back to reference Weertman J. R., Hall–Petch strengthening in nanocrystalline metals, Mat. Sci. and Eng. A, 1993, vol. 166, pp. 161–167CrossRef Weertman J. R., Hall–Petch strengthening in nanocrystalline metals, Mat. Sci. and Eng. A, 1993, vol. 166, pp. 161–167CrossRef
37.
go back to reference Chen J, Lu L, Lu K, Hardness and strain rate sensitivity of nanocrystalline Cu, Scr Mater, 2006, vol 54, pp. 1913–1918CrossRef Chen J, Lu L, Lu K, Hardness and strain rate sensitivity of nanocrystalline Cu, Scr Mater, 2006, vol 54, pp. 1913–1918CrossRef
Metadata
Title
A New Model for Inverse Hall-Petch Relation of Nanocrystalline Materials
Authors
Ali Shafiei Mohammadabadi
Kamran Dehghani
Publication date
01-10-2008
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2008
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-008-9206-8

Other articles of this Issue 5/2008

Journal of Materials Engineering and Performance 5/2008 Go to the issue

Premium Partners