Skip to main content
Top
Published in: Journal of Scientific Computing 1/2013

01-07-2013

A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection

Authors: Rui Du, Wenwen Liu

Published in: Journal of Scientific Computing | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article is devoted to the study of multiple-relaxation-time (MRT) lattice Boltzmann method with eight-by-eight collision matrix for natural convection flow. In the velocity space, eight speed directions are used and the corresponding incompressible multiple-relaxation-time model with force term is presented. D2Q4 model is for temperature field. The coupled double distribution functions (DDF) overcome artificial compressible effect corresponding to the standard MRT model. The simulations of natural convection flows with Pr=0.71 for air and Ra=103–109 are carried out and excellent agreements are obtained to demonstrate the numerical accuracy and stability of the proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988) CrossRef McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988) CrossRef
2.
go back to reference Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345–349 (1989) CrossRef Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345–349 (1989) CrossRef
3.
go back to reference Boghosian, B.M., Taylor, W.: Quantum lattice-gas model for the many-particle Schrodinger equation in d dimensions. Phys. Rev. E 57(1), 54–66 (1998) MathSciNetCrossRef Boghosian, B.M., Taylor, W.: Quantum lattice-gas model for the many-particle Schrodinger equation in d dimensions. Phys. Rev. E 57(1), 54–66 (1998) MathSciNetCrossRef
4.
go back to reference Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) CrossRef Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) CrossRef
5.
go back to reference Shan, X.W., He, X.Y.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65–68 (1998) CrossRef Shan, X.W., He, X.Y.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65–68 (1998) CrossRef
6.
go back to reference Palpacelli, S., Succi, S.: The quantum Lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4(5), 980–1007 (2008) Palpacelli, S., Succi, S.: The quantum Lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4(5), 980–1007 (2008)
7.
go back to reference Kuznik, F., Obrecht, C., Rusaouen, G.: LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59, 2380–2392 (2010) MATHCrossRef Kuznik, F., Obrecht, C., Rusaouen, G.: LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59, 2380–2392 (2010) MATHCrossRef
8.
go back to reference Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992) CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992) CrossRef
9.
go back to reference Ladd, A.J.C.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491–499 (1997) CrossRef Ladd, A.J.C.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491–499 (1997) CrossRef
10.
go back to reference Nestler, B., Aksi, A., Selzer, M.: Combined lattice Boltzmann and phase-field simulations for incompressible fluid flow in porous media. Math. Comput. Simul. 80, 1458–1468 (2010) MathSciNetMATHCrossRef Nestler, B., Aksi, A., Selzer, M.: Combined lattice Boltzmann and phase-field simulations for incompressible fluid flow in porous media. Math. Comput. Simul. 80, 1458–1468 (2010) MathSciNetMATHCrossRef
11.
go back to reference Succi, S., Filippova, O., Smith, G., Kaxiras, E.: Applying the lattice Boltzmann equation to multiscale fluid problems. Comput. Sci. Eng. 3(6), 26–37 (2001) CrossRef Succi, S., Filippova, O., Smith, G., Kaxiras, E.: Applying the lattice Boltzmann equation to multiscale fluid problems. Comput. Sci. Eng. 3(6), 26–37 (2001) CrossRef
12.
go back to reference Prasianakis, N.I., Chikatamarla Shyam, S., Karlin, I.V., et al.: Entropic lattice Boltzmann method for simulation of thermal flows. Math. Comput. Simul. 72(2–6), 179–183 (2006) MATHCrossRef Prasianakis, N.I., Chikatamarla Shyam, S., Karlin, I.V., et al.: Entropic lattice Boltzmann method for simulation of thermal flows. Math. Comput. Simul. 72(2–6), 179–183 (2006) MATHCrossRef
13.
go back to reference Palpacelli, S., Succi, S.: The quantum lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4, 980C1007 (2008) Palpacelli, S., Succi, S.: The quantum lattice Boltzmann equation: recent developments. Commun. Comput. Phys. 4, 980C1007 (2008)
14.
go back to reference Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection diffusion equations. Phys. Rev. E 79, 016701 (2009) CrossRef Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection diffusion equations. Phys. Rev. E 79, 016701 (2009) CrossRef
15.
16.
go back to reference Borja, S.C., Tsai, F.T.C.: Non-negativity and stability analyses of lattice Boltzmann method for advection diffusion equation. J. Comput. Phys. 228(1), 236C56 (2009) Borja, S.C., Tsai, F.T.C.: Non-negativity and stability analyses of lattice Boltzmann method for advection diffusion equation. J. Comput. Phys. 228(1), 236C56 (2009)
17.
go back to reference Blaak, R., Sloot, P.M.A.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256C66 (2000) MathSciNetCrossRef Blaak, R., Sloot, P.M.A.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256C66 (2000) MathSciNetCrossRef
18.
go back to reference Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Exact equilibria for lattice kinetic equations. Phys. Rev. Lett. 81, 1–6 (1998) CrossRef Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Exact equilibria for lattice kinetic equations. Phys. Rev. Lett. 81, 1–6 (1998) CrossRef
19.
go back to reference Karlin, I.V., Ferrante, A., Ottinger, H.C.: Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999) CrossRef Karlin, I.V., Ferrante, A., Ottinger, H.C.: Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999) CrossRef
20.
go back to reference Ansumali, S., Karlin, I.V.: Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107, 291–308 (2002) MATHCrossRef Ansumali, S., Karlin, I.V.: Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107, 291–308 (2002) MATHCrossRef
21.
go back to reference Ansumali, S., Karlin, I.V., Ottinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003) CrossRef Ansumali, S., Karlin, I.V., Ottinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003) CrossRef
22.
go back to reference Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61(6), 6546–6562 (2000) MathSciNetCrossRef Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61(6), 6546–6562 (2000) MathSciNetCrossRef
23.
go back to reference Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005) CrossRef Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005) CrossRef
24.
go back to reference Ginzburg, I.: Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28(11), 1196–1216 (2005) CrossRef Ginzburg, I.: Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28(11), 1196–1216 (2005) CrossRef
25.
go back to reference D’humières, D., Bouzidi, M., Lallemand, P.: Thirteen-velocity three-dimensional lattice Boltzmann model. Phys. Rev. E 63(6), 066702 (2001) CrossRef D’humières, D., Bouzidi, M., Lallemand, P.: Thirteen-velocity three-dimensional lattice Boltzmann model. Phys. Rev. E 63(6), 066702 (2001) CrossRef
26.
go back to reference D’humières, D., Ginzburg, I., Krafczyk, M., et al.: Multiple-relation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 360(1792), 437–451 (2002) MATHCrossRef D’humières, D., Ginzburg, I., Krafczyk, M., et al.: Multiple-relation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 360(1792), 437–451 (2002) MATHCrossRef
27.
go back to reference Mccracken, M.E., Abaham, J.: Multiplerelaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71(3), 036701 (2005) CrossRef Mccracken, M.E., Abaham, J.: Multiplerelaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71(3), 036701 (2005) CrossRef
28.
go back to reference Hiroaki, Y., Makoto, N.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229(20), 7774–7795 (2010) MathSciNetMATHCrossRef Hiroaki, Y., Makoto, N.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229(20), 7774–7795 (2010) MathSciNetMATHCrossRef
29.
go back to reference Du, R., Shi, B.C., Chen, X.W.: Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett. A 359(6), 564–572 (2006) MATHCrossRef Du, R., Shi, B.C., Chen, X.W.: Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett. A 359(6), 564–572 (2006) MATHCrossRef
30.
go back to reference Du, R., Shi, B.C.: Incompressible MRT lattice Boltzmann model with eight velocities in 2D space. Int. J. Mod. Phys. C 20(7), 1023–1037 (2009) MATHCrossRef Du, R., Shi, B.C.: Incompressible MRT lattice Boltzmann model with eight velocities in 2D space. Int. J. Mod. Phys. C 20(7), 1023–1037 (2009) MATHCrossRef
31.
go back to reference Mezrhab, A., Moussaoui, M.A., et al.: Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys. Lett. A 347, 3499–3507 (2010) CrossRef Mezrhab, A., Moussaoui, M.A., et al.: Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys. Lett. A 347, 3499–3507 (2010) CrossRef
32.
go back to reference Guo, Z.L., Shi, B.C., Zheng, C.G.: A coupled lattice BGK model for the Boussinesq equation. Int. J. Numer. Methods Fluids 39(4), 325–342 (2002) MathSciNetMATHCrossRef Guo, Z.L., Shi, B.C., Zheng, C.G.: A coupled lattice BGK model for the Boussinesq equation. Int. J. Numer. Methods Fluids 39(4), 325–342 (2002) MathSciNetMATHCrossRef
33.
go back to reference Guo, Z.L., Zheng, C.G., Shi, B.C.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002) CrossRef Guo, Z.L., Zheng, C.G., Shi, B.C.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002) CrossRef
34.
go back to reference Dixit, H.N., Babu, V.: Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int. J. Heat Mass Transf. 49, 727–739 (2006) MATHCrossRef Dixit, H.N., Babu, V.: Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int. J. Heat Mass Transf. 49, 727–739 (2006) MATHCrossRef
35.
go back to reference Massaioli, F., Benzi, R., Succi, S.: Exponential tails in two-dimensional Rayleigh-Bénard convection. Europhys. Lett. 21(3), 305–310 (1993) CrossRef Massaioli, F., Benzi, R., Succi, S.: Exponential tails in two-dimensional Rayleigh-Bénard convection. Europhys. Lett. 21(3), 305–310 (1993) CrossRef
Metadata
Title
A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection
Authors
Rui Du
Wenwen Liu
Publication date
01-07-2013
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2013
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-012-9665-9

Other articles of this Issue 1/2013

Journal of Scientific Computing 1/2013 Go to the issue

Premium Partner