Skip to main content
Top
Published in: Computational Mechanics 4/2021

30-06-2021 | Original Paper

A non-intrusive space-time interpolation from compact Stiefel manifolds of parametrized rigid-viscoplastic FEM problems

Authors: Orestis Friderikos, Marc Olive, Emmanuel Baranger, Dimitris Sagris, Constantine David

Published in: Computational Mechanics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work aims to interpolate parametrized reduced order model (ROM) basis constructed via the proper orthogonal decomposition (POD) to derive a robust ROM of the system’s dynamics for an unseen target parameter value. A novel non-intrusive space-time (ST) POD basis interpolation scheme is proposed, for which we define ROM spatial and temporal basis curves on compact Stiefel manifolds. An interpolation is finally defined on a mixed part encoded in a square matrix directly deduced using the spacial part, the singular values and the temporal part, to obtain an interpolated snapshot matrix, keeping track of accurate space and temporal eigenvectors. Moreover, in order to establish a well-defined curve on the compact Stiefel manifold, we introduce a new procedure, the so-called oriented SVD. Such an oriented SVD produces unique right and left eigenvectors for generic matrices, for which all singular values are distinct. It is important to notice that the ST POD basis interpolation does not require the construction and the subsequent solution of a reduced-order FEM model as classically is done. Hence it is avoiding the bottleneck of standard POD interpolation which is associated with the evaluation of the nonlinear terms of the Galerkin projection on the governing equations. As a proof of concept, the proposed method is demonstrated with the adaptation of rigid-thermoviscoplastic finite element ROMs applied to a typical nonlinear open forging metal forming process. Strong correlations of the ST POD models with respect to their associated high-fidelity FEM counterpart simulations are reported, highlighting its potential use for near real-time parametric simulations using off-line computed ROM POD databases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chenot J-L (1992) Recent contributions to the finite element modelling of metal forming processes. J Mater Process Technol 34(1–4):9–18CrossRef Chenot J-L (1992) Recent contributions to the finite element modelling of metal forming processes. J Mater Process Technol 34(1–4):9–18CrossRef
2.
go back to reference Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, Łuksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Śliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadziński J, Ziółkiewicz S (2019) Recent development trends in metal forming. Arch Civil Mech Eng 19(3):898–941CrossRef Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, Łuksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Śliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadziński J, Ziółkiewicz S (2019) Recent development trends in metal forming. Arch Civil Mech Eng 19(3):898–941CrossRef
3.
go back to reference Francisco C, Pierre L, Elías C (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404CrossRef Francisco C, Pierre L, Elías C (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404CrossRef
4.
go back to reference Allery C, Hamdouni A, Ryckelynck D, Verdon N (2011) A priori reduction method for solving the two-dimensional Burgers’ equations. Appl Math Comput 217(15):6671–6679MathSciNetMATH Allery C, Hamdouni A, Ryckelynck D, Verdon N (2011) A priori reduction method for solving the two-dimensional Burgers’ equations. Appl Math Comput 217(15):6671–6679MathSciNetMATH
5.
go back to reference Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATHCrossRef Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATHCrossRef
6.
go back to reference Henri T, Yvon JP (2005) Convergence estimates of POD-Galerkin methods for parabolic problems. In: IFIP international federation for information processing. Kluwer Academic Publishers, pp 295–306 Henri T, Yvon JP (2005) Convergence estimates of POD-Galerkin methods for parabolic problems. In: IFIP international federation for information processing. Kluwer Academic Publishers, pp 295–306
7.
go back to reference Nadine A (1991) On the hidden beauty of the proper orthogonal decomposition. Theoret Comput Fluid Dyn 2(5–6):339–352MATH Nadine A (1991) On the hidden beauty of the proper orthogonal decomposition. Theoret Comput Fluid Dyn 2(5–6):339–352MATH
8.
go back to reference Kari K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fennicae AI 34 Kari K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fennicae AI 34
9.
go back to reference Loève M (1977) Elementary probability theory. Probability theory I. Springer, New York, pp 1–52MATH Loève M (1977) Elementary probability theory. Probability theory I. Springer, New York, pp 1–52MATH
10.
go back to reference Golub GH, Loan CFV (1996) Matrix computations, vol 1, 3rd edn. JHU Press Golub GH, Loan CFV (1996) Matrix computations, vol 1, 3rd edn. JHU Press
11.
go back to reference Jolliffe IT (2002) Springer series in statistics. Principal Comp Anal 29 Jolliffe IT (2002) Springer series in statistics. Principal Comp Anal 29
12.
go back to reference Hervé A, Williams Lynne J (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459CrossRef Hervé A, Williams Lynne J (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459CrossRef
13.
go back to reference Edward JJ (1980) Principal components and factor analysis: part I principal components. J Qual Technol 12(4):201–213CrossRef Edward JJ (1980) Principal components and factor analysis: part I principal components. J Qual Technol 12(4):201–213CrossRef
14.
go back to reference Edward JJ (1981) Principal components and factor analysis: part II-additional topics related to principal components. J Qual Technol 13(1):46–58CrossRef Edward JJ (1981) Principal components and factor analysis: part II-additional topics related to principal components. J Qual Technol 13(1):46–58CrossRef
15.
go back to reference Patricia A, Siep W, Karen W, Ton B (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251MathSciNetMATHCrossRef Patricia A, Siep W, Karen W, Ton B (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251MathSciNetMATHCrossRef
16.
go back to reference Annika R, Stefanie R (2015) POD-based model reduction with empirical interpolation applied to nonlinear elasticity. Int J Numer Methods Eng 107(6):477–495MathSciNetMATH Annika R, Stefanie R (2015) POD-based model reduction with empirical interpolation applied to nonlinear elasticity. Int J Numer Methods Eng 107(6):477–495MathSciNetMATH
17.
go back to reference Saifon C, Sorensen Danny C (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764MathSciNetMATHCrossRef Saifon C, Sorensen Danny C (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764MathSciNetMATHCrossRef
18.
go back to reference Everson R, Sirovich L (1995) Karhunen-loève procedure for gappy data. J Opt Soc Am A 12(8):1657CrossRef Everson R, Sirovich L (1995) Karhunen-loève procedure for gappy data. J Opt Soc Am A 12(8):1657CrossRef
19.
go back to reference Kevin C, Charbel F, Julien C, David A (2013) The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows. J Opt Soc Am A 242:623–647MathSciNetMATH Kevin C, Charbel F, Julien C, David A (2013) The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows. J Opt Soc Am A 242:623–647MathSciNetMATH
20.
go back to reference David A, Julien C, Kevin C, Charbel F (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Methods Eng 80(9):1241–1258MATHCrossRef David A, Julien C, Kevin C, Charbel F (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Methods Eng 80(9):1241–1258MATHCrossRef
21.
go back to reference Meza RM (2018) Interpolation sur les variétés grassmanniennes et applications à la réduction de modèles en mécanique. PhD thesis, La Rochelle Meza RM (2018) Interpolation sur les variétés grassmanniennes et applications à la réduction de modèles en mécanique. PhD thesis, La Rochelle
22.
go back to reference Silvère B, Rodolphe S (2010) Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J Matrix Anal Appl 31(3):1055–1070MathSciNetMATHCrossRef Silvère B, Rodolphe S (2010) Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J Matrix Anal Appl 31(3):1055–1070MathSciNetMATHCrossRef
23.
go back to reference Lee JM (2013) Smooth manifolds. In: Introduction to Smooth manifolds. Springer, pp 1–31 Lee JM (2013) Smooth manifolds. In: Introduction to Smooth manifolds. Springer, pp 1–31
24.
go back to reference Sylvestre G, Dominique H, Jacques L (1990) Riemannian geometry, vol 2. Springer, New YorkMATH Sylvestre G, Dominique H, Jacques L (1990) Riemannian geometry, vol 2. Springer, New YorkMATH
25.
go back to reference Rolando M, Aziz H, Abdallah EH, Cyrille A (2019) POD basis interpolation via inverse distance weighting on Grassmann manifolds. Discrete Contin Dyn Syst 12(6):1743–1759MathSciNetMATH Rolando M, Aziz H, Abdallah EH, Cyrille A (2019) POD basis interpolation via inverse distance weighting on Grassmann manifolds. Discrete Contin Dyn Syst 12(6):1743–1759MathSciNetMATH
27.
go back to reference Lu Y, Blal N, Gravouil A (2018) Space-time POD based computational vademecums for parametric studies: application to thermo-mechanical problems. Adv Model Simul Eng Sci 5(1):1–27CrossRef Lu Y, Blal N, Gravouil A (2018) Space-time POD based computational vademecums for parametric studies: application to thermo-mechanical problems. Adv Model Simul Eng Sci 5(1):1–27CrossRef
28.
go back to reference Oulghelou M, Allery C (2021) Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the Grassmann manifold. J Comput Phys 426: Oulghelou M, Allery C (2021) Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the Grassmann manifold. J Comput Phys 426:
29.
go back to reference Vilas S, Elisabeth L, Franck B, Yannick H, Marianna B (2016) A Galerkin-free model reduction approach for the Navier-Stokes equations. J Comput Phys 309:148–163MathSciNetMATHCrossRef Vilas S, Elisabeth L, Franck B, Yannick H, Marianna B (2016) A Galerkin-free model reduction approach for the Navier-Stokes equations. J Comput Phys 309:148–163MathSciNetMATHCrossRef
30.
go back to reference Audouze C, De Vuyst F, Nair PB (2009) Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis. Int J Numer Methods Eng 80(8):1025–1057MathSciNetMATHCrossRef Audouze C, De Vuyst F, Nair PB (2009) Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis. Int J Numer Methods Eng 80(8):1025–1057MathSciNetMATHCrossRef
31.
go back to reference Youngsoo C, Kevin C (2019) Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction. SIAM J Sci Comput 41(1):A26–A58MathSciNetMATHCrossRef Youngsoo C, Kevin C (2019) Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction. SIAM J Sci Comput 41(1):A26–A58MathSciNetMATHCrossRef
32.
go back to reference Youngsoo C, Peter B, William A, Robert A, Kevin H (2021) Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems. J Comput Phys 424:MathSciNetCrossRef Youngsoo C, Peter B, William A, Robert A, Kevin H (2021) Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems. J Comput Phys 424:MathSciNetCrossRef
33.
go back to reference Christophe A, Florian DV, Nair Prasanth B (2013) Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations. Numer Methods Part Differ Equ 29(5):1587–1628MathSciNetMATHCrossRef Christophe A, Florian DV, Nair Prasanth B (2013) Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations. Numer Methods Part Differ Equ 29(5):1587–1628MathSciNetMATHCrossRef
34.
go back to reference Kobayashi S, Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method, vol 4. Oxford University Press, OxfordCrossRef Kobayashi S, Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method, vol 4. Oxford University Press, OxfordCrossRef
35.
go back to reference Lee CH, Kobayashi S (1973) New solutions to rigid-plastic deformation problems using a matrix method. J Eng Ind 95(3):865–873CrossRef Lee CH, Kobayashi S (1973) New solutions to rigid-plastic deformation problems using a matrix method. J Eng Ind 95(3):865–873CrossRef
36.
go back to reference Kobayashi S (1977) Rigid-plastic finite element analysis of axisymmetric metal forming processes. Numerical modeling of manufacturing process. ASME, New York, pp 49–65 Kobayashi S (1977) Rigid-plastic finite element analysis of axisymmetric metal forming processes. Numerical modeling of manufacturing process. ASME, New York, pp 49–65
37.
go back to reference Feng ZQ, De Saxcé G (1996) Rigid-plastic implicit integration scheme for analysis of metal forming. Eur J Mech A Solids 15(1):51–66MATH Feng ZQ, De Saxcé G (1996) Rigid-plastic implicit integration scheme for analysis of metal forming. Eur J Mech A Solids 15(1):51–66MATH
38.
go back to reference Friderikos O (2011) Two-dimensional rigid-plastic fem simulation of metal forming processes in matlab. In: Proceedings of the 4th international conference on manufacturing and materials engineering (ICMMEN), 3–5 October, Thessaloniki, Greece Friderikos O (2011) Two-dimensional rigid-plastic fem simulation of metal forming processes in matlab. In: Proceedings of the 4th international conference on manufacturing and materials engineering (ICMMEN), 3–5 October, Thessaloniki, Greece
39.
go back to reference Alan E, Arias Tomás A, Smith Steven T (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetMATHCrossRef Alan E, Arias Tomás A, Smith Steven T (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetMATHCrossRef
40.
go back to reference Absil P-A, Mahony R, Sepulchre R (2004) Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae 80(2):199–220MathSciNetMATHCrossRef Absil P-A, Mahony R, Sepulchre R (2004) Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae 80(2):199–220MathSciNetMATHCrossRef
41.
go back to reference Kozlov SE (1997) Geometry of the real Grassmannian manifolds. Parts I. II. Zapiski Nauchnykh Seminarov POMI 246:84–107 Kozlov SE (1997) Geometry of the real Grassmannian manifolds. Parts I. II. Zapiski Nauchnykh Seminarov POMI 246:84–107
43.
go back to reference Berceanu S (1997) On the geometry of complex Grassmann manifold, its noncompact dual and coherent states. Bulletin Belgian Math Soc Simon Stevin 4(2):205–243MathSciNetMATHCrossRef Berceanu S (1997) On the geometry of complex Grassmann manifold, its noncompact dual and coherent states. Bulletin Belgian Math Soc Simon Stevin 4(2):205–243MathSciNetMATHCrossRef
44.
go back to reference de Boor C, Ron A (1992) Computational aspects of polynomial interpolation in several variables. Math Comput 58(198):705–705 de Boor C, Ron A (1992) Computational aspects of polynomial interpolation in several variables. Math Comput 58(198):705–705
45.
go back to reference Rodney H (1998) The mathematical theory of plasticity, vol 11. Oxford University Press, Oxford Rodney H (1998) The mathematical theory of plasticity, vol 11. Oxford University Press, Oxford
46.
go back to reference Markov AA (1948) On variational principles in the theory of plasticity. Brown University, Providence Markov AA (1948) On variational principles in the theory of plasticity. Brown University, Providence
47.
go back to reference Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Quart J Mech Appl Math 1(1):18–28 Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Quart J Mech Appl Math 1(1):18–28
48.
go back to reference Oh SI (1982) Finite element analysis of metal forming processes with arbitrarily shaped dies. Int J Mech Sci 24(8):479–493MATHCrossRef Oh SI (1982) Finite element analysis of metal forming processes with arbitrarily shaped dies. Int J Mech Sci 24(8):479–493MATHCrossRef
49.
go back to reference Zienkiewicz OC, Godbole PN (1974) Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8(1):1–16MATHCrossRef Zienkiewicz OC, Godbole PN (1974) Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8(1):1–16MATHCrossRef
50.
go back to reference Ralston A, Rabinowitz P (2001) A first course in numerical analysis. Courier Corporation, New YorkMATH Ralston A, Rabinowitz P (2001) A first course in numerical analysis. Courier Corporation, New YorkMATH
51.
go back to reference Dahlquist G, Björck Å (2008) Numerical methods in scientific computing, vol I. Society for Industrial and Applied Mathematics Dahlquist G, Björck Å (2008) Numerical methods in scientific computing, vol I. Society for Industrial and Applied Mathematics
52.
go back to reference Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24(1):61–111MATHCrossRef Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24(1):61–111MATHCrossRef
53.
go back to reference Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat transfer-I. Int J Mech Sci 22(11):699–705MATHCrossRef Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat transfer-I. Int J Mech Sci 22(11):699–705MATHCrossRef
54.
go back to reference Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat transfer-II. Int J Mech Sci 22(11):707–718MATHCrossRef Rebelo N, Kobayashi S (1980) A coupled analysis of viscoplastic deformation and heat transfer-II. Int J Mech Sci 22(11):707–718MATHCrossRef
55.
go back to reference Chen CC (1978) Rigid-plastic finite-element analysis of ring compression. Appl Numer Methods Form Process Chen CC (1978) Rigid-plastic finite-element analysis of ring compression. Appl Numer Methods Form Process
56.
go back to reference van Rooyen GT, Backofen WA (1960) A study of interface friction in plastic compression. Int J Mech Sci 1(1):1–27CrossRef van Rooyen GT, Backofen WA (1960) A study of interface friction in plastic compression. Int J Mech Sci 1(1):1–27CrossRef
57.
Metadata
Title
A non-intrusive space-time interpolation from compact Stiefel manifolds of parametrized rigid-viscoplastic FEM problems
Authors
Orestis Friderikos
Marc Olive
Emmanuel Baranger
Dimitris Sagris
Constantine David
Publication date
30-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 4/2021
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02050-0

Other articles of this Issue 4/2021

Computational Mechanics 4/2021 Go to the issue