Skip to main content
Top
Published in: Computational Mechanics 4/2021

29-06-2021 | Original Paper

Energy minimization versus criteria-based methods in discrete cohesive fracture simulations

Authors: M. R. Hirmand, M. Vahab, K. D. Papoulia, N. Khalili

Published in: Computational Mechanics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We highlight the ability of a proposed energy-based cohesive interface method to produce stable and convergent solutions where methods based on failure criteria at similar discretization levels fail. The key feature of the method is the smooth transition from “uncracked” to “cracked” states, i.e., internal forces remain continuous functions of the deformation at initiation of failure. This property is missing in methods based on stress criteria. In explicit time stepping calculations, lack of continuity gives rise to spurious crack opening velocity fields. This issue is particularly significant in multiphysics problems such as hydraulic fracturing due to the coupling of the unknown fields and may lead to instability of the computational algorithm. In implicit time stepping calculations, lack of continuity introduces challenges in obtaining convergence of Newton iterations. Often the issue is circumvented by keeping cracks fixed within the iterative solver; the configuration of cracks is only updated at the end of a time step in such algorithms. This approach leads to the dependence of the crack-tip velocity on temporal and spatial discretization parameters. We present various simulation results to show that the energy approach is free of all such undesirable behaviors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In derivation of (18), the flow rate is taken to be zero at a crack-tip within \(\Gamma _p\) due to the assumption of an impermeable medium and zero fluid-lag conditions
 
2
It has been pointed out that sequential (staggered) schemes sometimes suffer from convergence issues especially in viscosity dominated regimes. A thorough analysis of these issues can be found in [39, 71]. The present solution algorithm assumes that the time steps used are sufficiently small that a reasonably accurate solution is obtained after one passing of a staggered iteration.
 
Literature
1.
go back to reference Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434MATHCrossRef Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434MATHCrossRef
2.
go back to reference Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938MATHCrossRef Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938MATHCrossRef
3.
go back to reference Khoei A, Azadi H, Moslemi H (2008) Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique. Eng Fract Mech 75:2921–2945CrossRef Khoei A, Azadi H, Moslemi H (2008) Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique. Eng Fract Mech 75:2921–2945CrossRef
4.
go back to reference Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int J Numer Meth Eng 84:1303–1343MATHCrossRef Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int J Numer Meth Eng 84:1303–1343MATHCrossRef
5.
go back to reference Wells GN, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Meth Eng 50:2667–2682MATHCrossRef Wells GN, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Meth Eng 50:2667–2682MATHCrossRef
6.
go back to reference Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833CrossRef Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833CrossRef
7.
go back to reference Khoei A, Vahab M, Hirmand M (2018) An enriched FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput Methods Appl Mech Eng 331:197–231MathSciNetMATHCrossRef Khoei A, Vahab M, Hirmand M (2018) An enriched FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput Methods Appl Mech Eng 331:197–231MathSciNetMATHCrossRef
8.
go back to reference Armero F, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160:119MATHCrossRef Armero F, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160:119MATHCrossRef
9.
go back to reference Armero F, Linder C (2008) New finite elements with embedded strong discontinuities in the finite deformation range. Comput Methods Appl Mech Eng 197:3138–3170MathSciNetMATHCrossRef Armero F, Linder C (2008) New finite elements with embedded strong discontinuities in the finite deformation range. Comput Methods Appl Mech Eng 197:3138–3170MathSciNetMATHCrossRef
10.
go back to reference Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200:326–344MathSciNetMATHCrossRef Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200:326–344MathSciNetMATHCrossRef
11.
go back to reference Nguyen VP (2014) Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational fracture mechanics. Eng Fract Mech 128:37–68CrossRef Nguyen VP (2014) Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational fracture mechanics. Eng Fract Mech 128:37–68CrossRef
12.
go back to reference Hansbo P, Salomonsson K (2015) A discontinuous Galerkin method for cohesive zone modelling. Finite Elem Anal Des 102:1–6MathSciNetCrossRef Hansbo P, Salomonsson K (2015) A discontinuous Galerkin method for cohesive zone modelling. Finite Elem Anal Des 102:1–6MathSciNetCrossRef
13.
go back to reference Abedi R, Petracovici B, Haber RB (2006) A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput Methods Appl Mech Eng 195:3247–3273MathSciNetMATHCrossRef Abedi R, Petracovici B, Haber RB (2006) A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput Methods Appl Mech Eng 195:3247–3273MathSciNetMATHCrossRef
14.
go back to reference Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) Nurbs-and t-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388MathSciNetMATHCrossRef Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) Nurbs-and t-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388MathSciNetMATHCrossRef
15.
16.
go back to reference Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61:2316–2343MATHCrossRef Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61:2316–2343MATHCrossRef
17.
go back to reference Remmers JJ, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77MATHCrossRef Remmers JJ, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77MATHCrossRef
18.
go back to reference Khoei A, Barani O, Mofid M (2011) Modeling of dynamic cohesive fracture propagation in porous saturated media. Int J Numer Anal Meth Geomech 35:1160–1184MATHCrossRef Khoei A, Barani O, Mofid M (2011) Modeling of dynamic cohesive fracture propagation in porous saturated media. Int J Numer Anal Meth Geomech 35:1160–1184MATHCrossRef
19.
go back to reference Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195:444–461MATHCrossRef Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195:444–461MATHCrossRef
20.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150MathSciNetMATHCrossRef Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150MathSciNetMATHCrossRef
21.
go back to reference Thomas RN, Paluszny A, Zimmerman RW (2020) Growth of three-dimensional fractures, arrays, and networks in brittle rocks under tension and compression. Comput Geotech 121:103447CrossRef Thomas RN, Paluszny A, Zimmerman RW (2020) Growth of three-dimensional fractures, arrays, and networks in brittle rocks under tension and compression. Comput Geotech 121:103447CrossRef
22.
go back to reference Li S, Ghosh S (2006) Multiple cohesive crack growth in brittle materials by the extended voronoi cell finite element model. Int J Fract 141:373–393MATHCrossRef Li S, Ghosh S (2006) Multiple cohesive crack growth in brittle materials by the extended voronoi cell finite element model. Int J Fract 141:373–393MATHCrossRef
23.
go back to reference Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear
24.
go back to reference Menouillard T, Belytschko T (2010) Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM. Int J Numer Meth Eng 84:47–72MathSciNetMATHCrossRef Menouillard T, Belytschko T (2010) Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM. Int J Numer Meth Eng 84:47–72MathSciNetMATHCrossRef
25.
go back to reference Song J-H, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250MATHCrossRef Song J-H, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250MATHCrossRef
26.
go back to reference Hirmand MR, Papoulia KD (2018) A continuation method for rigid-cohesive fracture in a discontinuous Galerkin finite element setting. Int J Numer Meth Eng 115:627–650CrossRef Hirmand MR, Papoulia KD (2018) A continuation method for rigid-cohesive fracture in a discontinuous Galerkin finite element setting. Int J Numer Meth Eng 115:627–650CrossRef
27.
go back to reference Sam C-H, Papoulia KD, Vavasis SA (2005) Obtaining initially rigid cohesive finite element models that are temporally convergent. Eng Fract Mech 72:2247–2267CrossRef Sam C-H, Papoulia KD, Vavasis SA (2005) Obtaining initially rigid cohesive finite element models that are temporally convergent. Eng Fract Mech 72:2247–2267CrossRef
28.
go back to reference Hirmand M, Vahab M, Papoulia K, Khalili N (2019) Robust simulation of dynamic fluid-driven fracture in naturally fractured impermeable media. Comput Methods Appl Mech Eng 357:112574MathSciNetMATHCrossRef Hirmand M, Vahab M, Papoulia K, Khalili N (2019) Robust simulation of dynamic fluid-driven fracture in naturally fractured impermeable media. Comput Methods Appl Mech Eng 357:112574MathSciNetMATHCrossRef
29.
go back to reference Papoulia KD, Sam C-H, Vavasis SA (2003) Time continuity in cohesive finite element modeling. Int J Numer Meth Eng 58:679–701MATHCrossRef Papoulia KD, Sam C-H, Vavasis SA (2003) Time continuity in cohesive finite element modeling. Int J Numer Meth Eng 58:679–701MATHCrossRef
30.
go back to reference Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282MATHCrossRef Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282MATHCrossRef
31.
go back to reference Klein P, Foulk J, Chen E, Wimmer S, Gao H (2001) Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theoret Appl Fract Mech 37:99–166CrossRef Klein P, Foulk J, Chen E, Wimmer S, Gao H (2001) Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theoret Appl Fract Mech 37:99–166CrossRef
32.
go back to reference Hirmand M (2019) Nondifferentiable energy minimization for cohesive fracture in a discontinuous Galerkin finite element framework Hirmand M (2019) Nondifferentiable energy minimization for cohesive fracture in a discontinuous Galerkin finite element framework
33.
go back to reference Verhoosel CV, Scott MA, De Borst R, Hughes TJ (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Meth Eng 87:336–360MATHCrossRef Verhoosel CV, Scott MA, De Borst R, Hughes TJ (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Meth Eng 87:336–360MATHCrossRef
34.
go back to reference Peruzzo C, Cao TD, Milanese E, Favia P, Pesavento F, Hussain F, Schrefler BA (2018) Dynamics of fracturing saturated porous media and self-organization of rupture. J Mech Phys Solids 111:113–133MathSciNetMATH Peruzzo C, Cao TD, Milanese E, Favia P, Pesavento F, Hussain F, Schrefler BA (2018) Dynamics of fracturing saturated porous media and self-organization of rupture. J Mech Phys Solids 111:113–133MathSciNetMATH
35.
go back to reference Peruzzo C, Simoni L, Schrefler B (2019) On stepwise advancement of fractures and pressure oscillations in saturated porous media. Eng Fract Mech 215:246–250CrossRef Peruzzo C, Simoni L, Schrefler B (2019) On stepwise advancement of fractures and pressure oscillations in saturated porous media. Eng Fract Mech 215:246–250CrossRef
36.
go back to reference Fathima KP, de Borst R (2019) Implications of single or multiple pressure degrees of freedom at fractures in fluid-saturated porous media. Eng Fract Mech 213:1–20CrossRef Fathima KP, de Borst R (2019) Implications of single or multiple pressure degrees of freedom at fractures in fluid-saturated porous media. Eng Fract Mech 213:1–20CrossRef
37.
go back to reference Areias PM, Rabczuk T (2008) Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. Int J Numer Meth Eng 74:475–505MATHCrossRef Areias PM, Rabczuk T (2008) Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. Int J Numer Meth Eng 74:475–505MATHCrossRef
38.
go back to reference Areias P, Rabczuk T, Camanho P (2013) Initially rigid cohesive laws and fracture based on edge rotations. Comput Mech 52:931–947MATHCrossRef Areias P, Rabczuk T, Camanho P (2013) Initially rigid cohesive laws and fracture based on edge rotations. Comput Mech 52:931–947MATHCrossRef
39.
go back to reference Giovanardi B, Serebrinsky S, Radovitzky R (2019) A fully-coupled computational framework for large-scale simulation of fluid-driven fracture propagation on parallel computers, arXiv preprint arXiv:1911.10275 Giovanardi B, Serebrinsky S, Radovitzky R (2019) A fully-coupled computational framework for large-scale simulation of fluid-driven fracture propagation on parallel computers, arXiv preprint arXiv:​1911.​10275
40.
go back to reference Ferté G, Massin P, Moës N (2016) 3D crack propagation with cohesive elements in the extended finite element method. Comput Methods Appl Mech Eng 300:347–374MathSciNetMATHCrossRef Ferté G, Massin P, Moës N (2016) 3D crack propagation with cohesive elements in the extended finite element method. Comput Methods Appl Mech Eng 300:347–374MathSciNetMATHCrossRef
41.
go back to reference Aduloju SC, Truster TJ (2019) A variational multiscale discontinuous Galerkin formulation for both implicit and explicit dynamic modeling of interfacial fracture. Comput Methods Appl Mech Eng 343:602–630MathSciNetMATHCrossRef Aduloju SC, Truster TJ (2019) A variational multiscale discontinuous Galerkin formulation for both implicit and explicit dynamic modeling of interfacial fracture. Comput Methods Appl Mech Eng 343:602–630MathSciNetMATHCrossRef
42.
go back to reference Truster TJ, Masud A (2013) A discontinuous/continuous Galerkin method for modeling of interphase damage in fibrous composite systems. Comput Mech 52:499–514MathSciNetMATHCrossRef Truster TJ, Masud A (2013) A discontinuous/continuous Galerkin method for modeling of interphase damage in fibrous composite systems. Comput Mech 52:499–514MathSciNetMATHCrossRef
43.
go back to reference Bruggi M, Venini P (2009) Modeling cohesive crack growth via a truly-mixed formulation. Comput Methods Appl Mech Eng 198:3836–3851MathSciNetMATHCrossRef Bruggi M, Venini P (2009) Modeling cohesive crack growth via a truly-mixed formulation. Comput Methods Appl Mech Eng 198:3836–3851MathSciNetMATHCrossRef
44.
go back to reference Wang Y, Waisman H (2018) An arc-length method for controlled cohesive crack propagation using high-order XFEM and irwin’s crack closure integral. Eng Fract Mech 199:235–256CrossRef Wang Y, Waisman H (2018) An arc-length method for controlled cohesive crack propagation using high-order XFEM and irwin’s crack closure integral. Eng Fract Mech 199:235–256CrossRef
45.
go back to reference Wang Y, Waisman H (2016) From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng 299:57–89MathSciNetMATHCrossRef Wang Y, Waisman H (2016) From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng 299:57–89MathSciNetMATHCrossRef
46.
go back to reference Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199:547–556MATHCrossRef Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199:547–556MATHCrossRef
47.
go back to reference Li S, Zeng X, Ren B, Qian J, Zhang J, Jha AK (2012) An atomistic-based interphase zone model for crystalline solids. Comput Methods Appl Mech Eng 229:87–109MathSciNetMATHCrossRef Li S, Zeng X, Ren B, Qian J, Zhang J, Jha AK (2012) An atomistic-based interphase zone model for crystalline solids. Comput Methods Appl Mech Eng 229:87–109MathSciNetMATHCrossRef
48.
49.
50.
51.
go back to reference Nguyen VP, Wu J-Y (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng 340:1000–1022MathSciNetMATHCrossRef Nguyen VP, Wu J-Y (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng 340:1000–1022MathSciNetMATHCrossRef
52.
go back to reference Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711MathSciNetMATHCrossRef Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711MathSciNetMATHCrossRef
53.
go back to reference Lorentz E, Cuvilliez S, Kazymyrenko K (2011) Convergence of a gradient damage model toward a cohesive zone model. Comptes Rendus Mécanique 339:20–26MATHCrossRef Lorentz E, Cuvilliez S, Kazymyrenko K (2011) Convergence of a gradient damage model toward a cohesive zone model. Comptes Rendus Mécanique 339:20–26MATHCrossRef
54.
go back to reference Lorentz E (2008) A mixed interface finite element for cohesive zone models. Comput Methods Appl Mech Eng 198:302–317MATHCrossRef Lorentz E (2008) A mixed interface finite element for cohesive zone models. Comput Methods Appl Mech Eng 198:302–317MATHCrossRef
55.
go back to reference Papoulia KD (2017) Non-differentiable energy minimization for cohesive fracture. Int J Fract 204:143–158CrossRef Papoulia KD (2017) Non-differentiable energy minimization for cohesive fracture. Int J Fract 204:143–158CrossRef
56.
go back to reference Bourdin B, Chukwudozie CP, Yoshioka K, et al., A variational approach to the numerical simulation of hydraulic fracturing, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers Bourdin B, Chukwudozie CP, Yoshioka K, et al., A variational approach to the numerical simulation of hydraulic fracturing, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers
57.
go back to reference Khisamitov I, Meschke G (2018) Variational approach to interface element modeling of brittle fracture propagation. Comput Methods Appl Mech Eng 328:452–476MathSciNetMATHCrossRef Khisamitov I, Meschke G (2018) Variational approach to interface element modeling of brittle fracture propagation. Comput Methods Appl Mech Eng 328:452–476MathSciNetMATHCrossRef
58.
go back to reference Mandal TK, Nguyen VP, Wu J-Y (2020) Evaluation of variational phase-field models for dynamic brittle fracture. Eng Fract Mechan 235:107169CrossRef Mandal TK, Nguyen VP, Wu J-Y (2020) Evaluation of variational phase-field models for dynamic brittle fracture. Eng Fract Mechan 235:107169CrossRef
59.
go back to reference Fraternali F (2007) Free discontinuity finite element models in two-dimensions for in-plane crack problems. Theoret Appl Fract Mech 47:274–282CrossRef Fraternali F (2007) Free discontinuity finite element models in two-dimensions for in-plane crack problems. Theoret Appl Fract Mech 47:274–282CrossRef
60.
go back to reference Papoulia KD, Vavasis SA, Ganguly P (2006) Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwheel-based mesh. Int J Numer Meth Eng 67:1–16MathSciNetMATHCrossRef Papoulia KD, Vavasis SA, Ganguly P (2006) Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwheel-based mesh. Int J Numer Meth Eng 67:1–16MathSciNetMATHCrossRef
61.
go back to reference Charlotte M, Laverne J, Marigo J-J (2006) Initiation of cracks with cohesive force models: a variational approach. Eur J Mech A/Solids 25:649–669MathSciNetMATHCrossRef Charlotte M, Laverne J, Marigo J-J (2006) Initiation of cracks with cohesive force models: a variational approach. Eur J Mech A/Solids 25:649–669MathSciNetMATHCrossRef
63.
go back to reference Hirmand MR, Papoulia KD (2019) Block coordinate descent energy minimization for dynamic cohesive fracture. Comput Methods Appl Mech Eng 354:663–688MathSciNetMATHCrossRef Hirmand MR, Papoulia KD (2019) Block coordinate descent energy minimization for dynamic cohesive fracture. Comput Methods Appl Mech Eng 354:663–688MathSciNetMATHCrossRef
64.
go back to reference Petrie JIM, Hirmand MR, Papoulia KD (2021) Quasistatic cohesive fracture with an alternating direction method of multipliers (ADMM). In review Petrie JIM, Hirmand MR, Papoulia KD (2021) Quasistatic cohesive fracture with an alternating direction method of multipliers (ADMM). In review
65.
go back to reference Vavasis SA, Papoulia KD, Hirmand MR (2020) Second-order cone interior-point method for quasistatic and moderate dynamic cohesive fracture. Comput Meth Appl Mech Eng 358:112633MathSciNetMATHCrossRef Vavasis SA, Papoulia KD, Hirmand MR (2020) Second-order cone interior-point method for quasistatic and moderate dynamic cohesive fracture. Comput Meth Appl Mech Eng 358:112633MathSciNetMATHCrossRef
66.
go back to reference Grote MJ, Schneebeli A, Schötzau D (2006) Discontinuous galerkin finite element method for the wave equation. SIAM J Numer Anal 44:2408–2431MathSciNetMATHCrossRef Grote MJ, Schneebeli A, Schötzau D (2006) Discontinuous galerkin finite element method for the wave equation. SIAM J Numer Anal 44:2408–2431MathSciNetMATHCrossRef
67.
68.
go back to reference Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45CrossRef Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45CrossRef
69.
go back to reference Vahab M, Khalili N (2018) Computational algorithm for the anticipation of the fluid-lag zone in hydraulic fracturing treatments. Int J Geomech 18:04018139CrossRef Vahab M, Khalili N (2018) Computational algorithm for the anticipation of the fluid-lag zone in hydraulic fracturing treatments. Int J Geomech 18:04018139CrossRef
70.
71.
go back to reference Parcheis Efahani M, Gracie R (2019) On the undrained and drained hydraulic fracture splits. Int J Numer Meth Eng 118:741–763MathSciNetCrossRef Parcheis Efahani M, Gracie R (2019) On the undrained and drained hydraulic fracture splits. Int J Numer Meth Eng 118:741–763MathSciNetCrossRef
72.
go back to reference Garagash D, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67:183–192MATHCrossRef Garagash D, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67:183–192MATHCrossRef
73.
go back to reference Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson JRA, Thiercelin M, Cheng A (1994) The crack tip region in hydraulic fracturing. In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol 447, pp 39–48 Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson JRA, Thiercelin M, Cheng A (1994) The crack tip region in hydraulic fracturing. In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol 447, pp 39–48
74.
go back to reference Khoei A, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int J Numer Meth Eng 104:439–468MathSciNetMATHCrossRef Khoei A, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int J Numer Meth Eng 104:439–468MathSciNetMATHCrossRef
75.
go back to reference Boone TJ, Ingraffea AR (1990) A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int J Numer Anal Meth Geomech 14:27–47CrossRef Boone TJ, Ingraffea AR (1990) A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int J Numer Anal Meth Geomech 14:27–47CrossRef
76.
77.
go back to reference M. Vahab, N. Khalili, X-FEM modeling of multizone hydraulic fracturing treatments within saturated porous media, Rock Mechanics and Rock Engineering (2018) 1–21 M. Vahab, N. Khalili, X-FEM modeling of multizone hydraulic fracturing treatments within saturated porous media, Rock Mechanics and Rock Engineering (2018) 1–21
78.
go back to reference ICOLD, Fifth International Benchmark Workshop on Numerical Analysis of dams, Them A2, Denver, Colorado ICOLD, Fifth International Benchmark Workshop on Numerical Analysis of dams, Them A2, Denver, Colorado
79.
go back to reference Khoei A, Vahab M, Haghighat E, Moallemi S (2014) A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched FEM technique. Int J Fract 188:79–108CrossRef Khoei A, Vahab M, Haghighat E, Moallemi S (2014) A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched FEM technique. Int J Fract 188:79–108CrossRef
80.
go back to reference Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54:7128CrossRef Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54:7128CrossRef
Metadata
Title
Energy minimization versus criteria-based methods in discrete cohesive fracture simulations
Authors
M. R. Hirmand
M. Vahab
K. D. Papoulia
N. Khalili
Publication date
29-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 4/2021
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02049-7

Other articles of this Issue 4/2021

Computational Mechanics 4/2021 Go to the issue