Skip to main content
Top
Published in: Journal of Computational Electronics 1/2019

21-01-2019

A nonlocal approach for semianalytical modeling of a heterojunction vertical surrounding-gate tunnel FET

Authors: Nidhal Abdelmalek, Fayçal Djeffal, Toufik Bentrcia

Published in: Journal of Computational Electronics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A semianalytical model based on a nonlocal approach is proposed for an undoped tunnel field-effect transistor (TFET) with a vertical surrounding-gate structure. The heterostructure band alignment is computed by applying the affinity rule on suitable potential expressions obtained from the two-dimensional (2-D) electrostatic solution for all device regions. The fringing field, doping-induced degeneracy, ambipolarity, and dual modulation effects are included with the aim of obtaining a large domain of validity. The core model is completed with expressions for the capacitance of the terminals and validated against numerical simulations obtained using ATLAS-2D software. An investigation of the types of band alignment and the impact of doping on the device performance is also conducted. The developed models could be implemented into commercial simulators to investigate circuits based on such multigate field-effect transistors (FETs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mookerjea, S., et al: Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–3. IEEE (2009) Mookerjea, S., et al: Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–3. IEEE (2009)
2.
go back to reference Dewey, G., et al.: Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In: IEEE International Electron Devices Meeting (IEDM), Washington, DC, pp. 785–788. (2011) Dewey, G., et al.: Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In: IEEE International Electron Devices Meeting (IEDM), Washington, DC, pp. 785–788. (2011)
3.
go back to reference Knoch, J., Appenzeller, J.: Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Lett. 31, 305–307 (2010)CrossRef Knoch, J., Appenzeller, J.: Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Lett. 31, 305–307 (2010)CrossRef
4.
go back to reference Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104, 064514 (2008)CrossRef Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104, 064514 (2008)CrossRef
5.
go back to reference Convertino, C., Zota, C.B., Schmid, H., Ionescu, A.M., Moselund, K.E.: III–V heterostructure tunnel field-effect transistor. J. Phys. Condens. Matter 30, 264005 (2018)CrossRef Convertino, C., Zota, C.B., Schmid, H., Ionescu, A.M., Moselund, K.E.: III–V heterostructure tunnel field-effect transistor. J. Phys. Condens. Matter 30, 264005 (2018)CrossRef
6.
go back to reference De Michielis, L., et al.: Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)CrossRef De Michielis, L., et al.: Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)CrossRef
7.
go back to reference Dong, Y., et al.: A compact model for double-gate heterojunction tunnel FETs. IEEE Trans. Electron Devices 63, 4506–4513 (2016)CrossRef Dong, Y., et al.: A compact model for double-gate heterojunction tunnel FETs. IEEE Trans. Electron Devices 63, 4506–4513 (2016)CrossRef
8.
go back to reference Jain, P., et al.: Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: thickness scaling. J. Appl. Phys. 122, 014502 (2017)CrossRef Jain, P., et al.: Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: thickness scaling. J. Appl. Phys. 122, 014502 (2017)CrossRef
9.
go back to reference Guan, Y., et al.: An analytical model of gate-all-around heterojunction tunneling FET. IEEE Trans. Electron Devices 65, 776–782 (2018)CrossRef Guan, Y., et al.: An analytical model of gate-all-around heterojunction tunneling FET. IEEE Trans. Electron Devices 65, 776–782 (2018)CrossRef
11.
go back to reference Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)CrossRef Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)CrossRef
12.
go back to reference Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 36, 1094–1096 (2015)CrossRef Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 36, 1094–1096 (2015)CrossRef
13.
go back to reference Abdelmalek, N., Djeffal, F., Bentrcia, T.: Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation. J. Comput. Electron. 17, 724–735 (2018)CrossRef Abdelmalek, N., Djeffal, F., Bentrcia, T.: Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation. J. Comput. Electron. 17, 724–735 (2018)CrossRef
14.
go back to reference ATLAS User Manual: Device Simulation Software (2012) ATLAS User Manual: Device Simulation Software (2012)
15.
go back to reference Anvarifard, M.K., Orouji, A.A.: Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans. Electron Devices 65, 1653–1657 (2018)CrossRef Anvarifard, M.K., Orouji, A.A.: Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans. Electron Devices 65, 1653–1657 (2018)CrossRef
16.
go back to reference Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology-A comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRef Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology-A comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRef
17.
go back to reference Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)CrossRef Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)CrossRef
18.
go back to reference Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRef Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRef
19.
go back to reference Shen, C., et al.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Trans. Electron Devices 29, 1252–1255 (2008)CrossRef Shen, C., et al.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Trans. Electron Devices 29, 1252–1255 (2008)CrossRef
20.
go back to reference Jazaeri, F.: Modeling junctionless metal-oxide-semiconductor field-effect transistor. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (2015) Jazaeri, F.: Modeling junctionless metal-oxide-semiconductor field-effect transistor. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (2015)
21.
go back to reference Lin, S.C., Kuo, J.B.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)CrossRef Lin, S.C., Kuo, J.B.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)CrossRef
22.
go back to reference Bansal, A., Paul, B.C., Roy, K.: An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 2765–2774 (2006)CrossRef Bansal, A., Paul, B.C., Roy, K.: An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 2765–2774 (2006)CrossRef
23.
go back to reference Plonsey, R., Collin, R.E.: Principles and Applications of Electromagnetic Fields. McGraw-Hill Book Company, New York (1961) Plonsey, R., Collin, R.E.: Principles and Applications of Electromagnetic Fields. McGraw-Hill Book Company, New York (1961)
24.
go back to reference Anderson, R.L.: Experiments on Ge–GaAs heterojunction. Solid State Electron. 5, 341–344 (1962)CrossRef Anderson, R.L.: Experiments on Ge–GaAs heterojunction. Solid State Electron. 5, 341–344 (1962)CrossRef
25.
go back to reference Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)CrossRef Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)CrossRef
26.
go back to reference Tanaka, S.: A unified theory of direct and indirect interband tunneling under a nonuniform electric field. Solid State Electron. 37, 1543–1552 (1994)CrossRef Tanaka, S.: A unified theory of direct and indirect interband tunneling under a nonuniform electric field. Solid State Electron. 37, 1543–1552 (1994)CrossRef
27.
go back to reference Milnes, A.G., Feuct, D.L.: Heterojunctions and Metal Semiconductor Junctions. Academic, New York (1972) Milnes, A.G., Feuct, D.L.: Heterojunctions and Metal Semiconductor Junctions. Academic, New York (1972)
28.
go back to reference Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57, 3222–3230 (2010)CrossRef Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57, 3222–3230 (2010)CrossRef
29.
go back to reference Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRef Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRef
30.
go back to reference Rajamohanan, B.: Fabrication, characterization and physics of III–V tunneling field effect transistors for low power logic and RF applications. Ph.D. dissertation, Pennsylvania State University (2010) Rajamohanan, B.: Fabrication, characterization and physics of III–V tunneling field effect transistors for low power logic and RF applications. Ph.D. dissertation, Pennsylvania State University (2010)
31.
go back to reference Lundstrom, M.S., Schuelke, R.J.: Modeling semiconductor heterojunctions in equilibrium. Solid State Electron. 25, 683–691 (1982)CrossRef Lundstrom, M.S., Schuelke, R.J.: Modeling semiconductor heterojunctions in equilibrium. Solid State Electron. 25, 683–691 (1982)CrossRef
32.
go back to reference Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009)CrossRef
33.
go back to reference Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)CrossRef Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)CrossRef
Metadata
Title
A nonlocal approach for semianalytical modeling of a heterojunction vertical surrounding-gate tunnel FET
Authors
Nidhal Abdelmalek
Fayçal Djeffal
Toufik Bentrcia
Publication date
21-01-2019
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2019
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01302-w

Other articles of this Issue 1/2019

Journal of Computational Electronics 1/2019 Go to the issue