Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2018

21-11-2017

A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites

Authors: Abdollah Saboori, Matteo Pavese, Claudio Badini, Paolo Fino

Published in: Metallurgical and Materials Transactions A | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing–annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Du, D. Lu, J. Qi, Y. Shen, L. Yin, Y. Wang, Z. Zheng, and T. Xiong. (2014) Heat dissipation performance of porous copper with elongated cylindrical pores. J. Mater. Sci. Technol. 30:934–938.CrossRef H. Du, D. Lu, J. Qi, Y. Shen, L. Yin, Y. Wang, Z. Zheng, and T. Xiong. (2014) Heat dissipation performance of porous copper with elongated cylindrical pores. J. Mater. Sci. Technol. 30:934–938.CrossRef
2.
go back to reference J. Kováčik and Š. Emmer, “Thermal expansion of Cu/graphite composites : effect of copper coating,” Kov. Mater. 49, 411–416 (2011). J. Kováčik and Š. Emmer, “Thermal expansion of Cu/graphite composites : effect of copper coating,” Kov. Mater. 49, 411–416 (2011).
3.
go back to reference B. Chen, Q. Bi, J. Yang, Y. Xia, and J. Hao, “Tribology International Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites,” Tribol. Int. 41, 1145–1152 (2008).CrossRef B. Chen, Q. Bi, J. Yang, Y. Xia, and J. Hao, “Tribology International Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites,” Tribol. Int. 41, 1145–1152 (2008).CrossRef
4.
go back to reference A. Saboori, M. Pavese, C. Badini, and P. Fino (2017) Microstructure and thermal conductivity of Al-Graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. 30:675–687.CrossRef A. Saboori, M. Pavese, C. Badini, and P. Fino (2017) Microstructure and thermal conductivity of Al-Graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. 30:675–687.CrossRef
5.
go back to reference M. Rashad, F. Pan, Y. Liu, X. Chen, and H. Lin. (2016) High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J. Magnes. Alloy. 4:270–277.CrossRef M. Rashad, F. Pan, Y. Liu, X. Chen, and H. Lin. (2016) High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J. Magnes. Alloy. 4:270–277.CrossRef
7.
go back to reference M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She. (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets,” Mater. Sci. Eng. A 630, 36–44.CrossRef M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She. (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets,” Mater. Sci. Eng. A 630, 36–44.CrossRef
8.
go back to reference JR Davis (2001) Powder metallurgy: copper and copper alloys. In JR Davis (ed.) ASM Specialty Handbook. ASM International, Materials park. JR Davis (2001) Powder metallurgy: copper and copper alloys. In JR Davis (ed.) ASM Specialty Handbook. ASM International, Materials park.
9.
go back to reference R. N. Caron, Copper Alloys: Properties and Applications, Encycl. Mater. Sci. Technol., 2nd ed. (2001). R. N. Caron, Copper Alloys: Properties and Applications, Encycl. Mater. Sci. Technol., 2nd ed. (2001).
10.
go back to reference K. J. A. Kundig and J. G. Cowie., Mechanical Engineers’ Handbook : Materials and Mechanical Design, 3rd ed., M. Kutz, Ed. (John Wiley & Sons, Inc., 2006). K. J. A. Kundig and J. G. Cowie., Mechanical Engineers’ Handbook : Materials and Mechanical Design, 3rd ed., M. Kutz, Ed. (John Wiley & Sons, Inc., 2006).
11.
go back to reference T. Varol and A. Canakci, “Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy,” Met. Mater. Int. 21, 704–712 (2015).CrossRef T. Varol and A. Canakci, “Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy,” Met. Mater. Int. 21, 704–712 (2015).CrossRef
12.
go back to reference T. Varol and A. Canakci, “The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy,” J. Alloys Compd. 649, 1066–1074 (2015).CrossRef T. Varol and A. Canakci, “The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy,” J. Alloys Compd. 649, 1066–1074 (2015).CrossRef
13.
go back to reference M. Rashad, F. Pan, M. Asif, and A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” J. Ind. Eng. Chem. 20, 4250–4255 (2014).CrossRef M. Rashad, F. Pan, M. Asif, and A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” J. Ind. Eng. Chem. 20, 4250–4255 (2014).CrossRef
14.
go back to reference L. Liu, M. Qing, Y. Wang, and S. Chen (2015) Defects in Graphene : Generation, Healing, and Their Effects on the Properties of Graphene : A Review,” J. Mater. Sci. Technol. 31, 599–606.CrossRef L. Liu, M. Qing, Y. Wang, and S. Chen (2015) Defects in Graphene : Generation, Healing, and Their Effects on the Properties of Graphene : A Review,” J. Mater. Sci. Technol. 31, 599–606.CrossRef
15.
go back to reference M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao (2015)Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243–250.CrossRef M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao (2015)Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243–250.CrossRef
16.
go back to reference A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino (2017)An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. J. Mater. Eng. Perform. 26, 993–999.CrossRef A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino (2017)An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. J. Mater. Eng. Perform. 26, 993–999.CrossRef
17.
go back to reference A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64, 1–13 (2001).CrossRef A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64, 1–13 (2001).CrossRef
18.
go back to reference T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, et al., “Uniaxial strain in graphene by Raman spectroscopy : G peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B 79, 1–8 (2009).CrossRef T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, et al., “Uniaxial strain in graphene by Raman spectroscopy : G peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B 79, 1–8 (2009).CrossRef
19.
go back to reference R. Perez-Bustamante, D. Bolanos-Morales, J. Bonilla-Maetinez, and I. Estrada-Guel, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloy. compd. 615, S578–S582 (2014).CrossRef R. Perez-Bustamante, D. Bolanos-Morales, J. Bonilla-Maetinez, and I. Estrada-Guel, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloy. compd. 615, S578–S582 (2014).CrossRef
20.
go back to reference R. Pérez-Bustamante, C. D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. A. Pérez-García, and R. Martínez-Sánchez, “Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling,” Mater.Sci. Eng. A 502, 159–163 (2009).CrossRef R. Pérez-Bustamante, C. D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. A. Pérez-García, and R. Martínez-Sánchez, “Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling,” Mater.Sci. Eng. A 502, 159–163 (2009).CrossRef
21.
go back to reference M. Tabandeh-khorshid, J. B. Ferguson, B. F. Schultz, C. Kim, K. Cho, and P. K. Rohatgi (2016) Strengthening mechanisms of graphene- and Al2O3 -reinforced aluminum nanocomposites synthesized by room temperature milling. Mater. Des. 92, 79–87.CrossRef M. Tabandeh-khorshid, J. B. Ferguson, B. F. Schultz, C. Kim, K. Cho, and P. K. Rohatgi (2016) Strengthening mechanisms of graphene- and Al2O3 -reinforced aluminum nanocomposites synthesized by room temperature milling. Mater. Des. 92, 79–87.CrossRef
22.
go back to reference K. Chu and C. C. Jia, “Enhanced strength in bulk graphene-copper composite,” Phys. Status Solidi A 211, 184–190 (2014).CrossRef K. Chu and C. C. Jia, “Enhanced strength in bulk graphene-copper composite,” Phys. Status Solidi A 211, 184–190 (2014).CrossRef
23.
go back to reference F. Akhtar, S. Javid, K. Ali, X. Du, and S. Guo, “Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites,” Mater. Charact. 60, 327–336 (2009).CrossRef F. Akhtar, S. Javid, K. Ali, X. Du, and S. Guo, “Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites,” Mater. Charact. 60, 327–336 (2009).CrossRef
24.
go back to reference K. Rajkumar and S. Aravindan, “Tribological behavior of microwave processed copper – nanographite composites,” Tribiology Int. 57, 282–296 (2013).CrossRef K. Rajkumar and S. Aravindan, “Tribological behavior of microwave processed copper – nanographite composites,” Tribiology Int. 57, 282–296 (2013).CrossRef
25.
go back to reference F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, and Q. Huang (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon N. Y. 96, 836–842.CrossRef F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, and Q. Huang (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon N. Y. 96, 836–842.CrossRef
26.
go back to reference P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov, and A. A. Balandin, “Thermal properties of graphene–copper–graphene heterogeneous films,” NANO Lett. 14, 1497–1503 (2014).CrossRef P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov, and A. A. Balandin, “Thermal properties of graphene–copper–graphene heterogeneous films,” NANO Lett. 14, 1497–1503 (2014).CrossRef
27.
go back to reference J. P. Tu, W. Rong, S. Y. Guo, and Y. Z. Yang, “Dry sliding wear behavior of in situ Cu – TiB 2 nanocomposites against medium carbon steel against medium carbon steel,” Wear 255, 832–835 (2003).CrossRef J. P. Tu, W. Rong, S. Y. Guo, and Y. Z. Yang, “Dry sliding wear behavior of in situ Cu – TiB 2 nanocomposites against medium carbon steel against medium carbon steel,” Wear 255, 832–835 (2003).CrossRef
28.
go back to reference A. Nadkarani: Dispersion strengthened metal composites. U.S. Patent No. 4,752,334. 1988. A. Nadkarani: Dispersion strengthened metal composites. U.S. Patent No. 4,752,334. 1988.
29.
go back to reference T. Varol and A. Canakci, “Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake Powder Metallurgy,” Arab. J. Sci. Eng. 40, 2711–2720 (2015).CrossRef T. Varol and A. Canakci, “Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake Powder Metallurgy,” Arab. J. Sci. Eng. 40, 2711–2720 (2015).CrossRef
30.
go back to reference Claire Arnaud, Florence Lecouturier, David Mesguich, Nelson Ferreira,Geoffroy Chevallier, “High strength – High conductivity double-walled carbon nanotube – Copper composite wires,” Carbon N. Y. 96, 212–215 (2016).CrossRef Claire Arnaud, Florence Lecouturier, David Mesguich, Nelson Ferreira,Geoffroy Chevallier, “High strength – High conductivity double-walled carbon nanotube – Copper composite wires,” Carbon N. Y. 96, 212–215 (2016).CrossRef
31.
go back to reference QHF Chen, Jiamin Ying, Yifei Wang, Shiyu Du, Zhaoping Liu (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842.CrossRef QHF Chen, Jiamin Ying, Yifei Wang, Shiyu Du, Zhaoping Liu (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842.CrossRef
32.
go back to reference S. F. Moustafa, S. A. El-Badry, A. M. Sanad, and B. Kieback, “Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders,” Wear 253, 699–710 (2002).CrossRef S. F. Moustafa, S. A. El-Badry, A. M. Sanad, and B. Kieback, “Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders,” Wear 253, 699–710 (2002).CrossRef
33.
go back to reference S. F. Moustafa, S. A. El-Badry, and A. M. Sanad, “Effect of Graphite with and Without Copper Coating on Consolidation Behaviour and Sintering of Copper–Graphite Composite,” Powder Metall. 40, 201–206 (1997).CrossRef S. F. Moustafa, S. A. El-Badry, and A. M. Sanad, “Effect of Graphite with and Without Copper Coating on Consolidation Behaviour and Sintering of Copper–Graphite Composite,” Powder Metall. 40, 201–206 (1997).CrossRef
34.
go back to reference G. C. Yao, Q. S. Mei, J. Y. Li, C. L. Li, Y. Ma, F. Chen, and M. Liu, “Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding,” Mater. Des. 110, 124–129 (2016).CrossRef G. C. Yao, Q. S. Mei, J. Y. Li, C. L. Li, Y. Ma, F. Chen, and M. Liu, “Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding,” Mater. Des. 110, 124–129 (2016).CrossRef
35.
go back to reference S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang, “Cu matrix composites reinforced with aligned carbon nanotubes : Mechanical, electrical and thermal properties,” Mater. Sci. Eng. A 675, 82–91 (2016).CrossRef S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang, “Cu matrix composites reinforced with aligned carbon nanotubes : Mechanical, electrical and thermal properties,” Mater. Sci. Eng. A 675, 82–91 (2016).CrossRef
Metadata
Title
A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites
Authors
Abdollah Saboori
Matteo Pavese
Claudio Badini
Paolo Fino
Publication date
21-11-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2018
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-017-4409-y

Other articles of this Issue 1/2018

Metallurgical and Materials Transactions A 1/2018 Go to the issue

Premium Partners