Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 10/2016

09-06-2016

A novel connecting material: electrically conductive adhesives based on polyimide resin and conductive ceramic powders

Authors: Shengjie You, Yong Wu, Tiancheng Sun, Xingmai Huang, Liying Qi, Jiajing Zhang, Sue Hao

Published in: Journal of Materials Science: Materials in Electronics | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to achieve the application of conductive adhesives under high temperatures, we prepared a novel type of conductive adhesives by using CaMnO3 conductive ceramic powders as conductive fillers and polyimide as matrix resin. The resistivity of the prepared polyimide conductive adhesives is 0.25 KΩ m and the tensile strength is 0.85 MPa. After aging treatment, the stability and heat resistance of the polyimide conductive adhesives are excellent comparing to epoxy resin conductive adhesives. The electrical and mechanical properties of the epoxy resin were decreased rapidly after 24 h. However, there was a great stability on the mechanical and electrical properties of the polyimide conductive adhesives. Their performances were still well after 300 °C, but the performances of the epoxy resin conductive adhesives were obviously deteriorated after 150 °C. These prove that the prepared polyimide conductive adhesives can overcome the disadvantage of poor stability and poor heat-resistance property of the epoxy resin conductive adhesives, and will have broad application prospects as connecting materials in the aerospace field. After a series of exploration experiments, we determined the best recipe and the best curing process of the polyimide conductive adhesives: 40 wt% CaMnO3 as conductive powders, 40 wt% styrene as thinners, 2 wt% 3-Amino-propyl-triethoxy-silane (KH550) as coupling agent, 2 wt% 2,4,6-trimethylbenzoyl-phosphine oxide as photoinitiator, 4 wt% benzoyl peroxide as thermal initiator, 1 wt% polyethylene glycol-400 as conductive promoting agent, curing temperature of 170 °C, curing time of 240 s.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.M. Amoli, A.M. Hu, N.Y. Zhou, J. Mater. Sci. Mater. Electron. 26, 4730–4745 (2015)CrossRef B.M. Amoli, A.M. Hu, N.Y. Zhou, J. Mater. Sci. Mater. Electron. 26, 4730–4745 (2015)CrossRef
3.
go back to reference A. Miszczyk, K. Darowicki, T. Schauer, J. Solid State Electrochem. 9, 909–913 (2005)CrossRef A. Miszczyk, K. Darowicki, T. Schauer, J. Solid State Electrochem. 9, 909–913 (2005)CrossRef
4.
go back to reference K. Zhong, G. Peabody, E. Blankenhorn, J. Mater. Res. 28, 2753–2761 (2013)CrossRef K. Zhong, G. Peabody, E. Blankenhorn, J. Mater. Res. 28, 2753–2761 (2013)CrossRef
5.
go back to reference L.N. Ho, H. Nishikawa, J. Mater. Sci. Mater. Electron. 26, 7771–7779 (2015)CrossRef L.N. Ho, H. Nishikawa, J. Mater. Sci. Mater. Electron. 26, 7771–7779 (2015)CrossRef
6.
go back to reference J.J. Zhang, S.E. Hao, Q.Y. Shang, Y. Wu, S.J. You, J. Mater. Sci. Mater. Electron. 26, 6266–6275 (2015)CrossRef J.J. Zhang, S.E. Hao, Q.Y. Shang, Y. Wu, S.J. You, J. Mater. Sci. Mater. Electron. 26, 6266–6275 (2015)CrossRef
8.
go back to reference G.F. Tian, B.B. Chen, S.L. Qi, H.Q. Niu, Compos. Interfaces 23, 145–155 (2016)CrossRef G.F. Tian, B.B. Chen, S.L. Qi, H.Q. Niu, Compos. Interfaces 23, 145–155 (2016)CrossRef
9.
10.
go back to reference Y.M. Chen, X. Gao, J.L. Wang, W. He, J. Appl. Polym. Sci. 132, 41889-1–41889-10 (2015) Y.M. Chen, X. Gao, J.L. Wang, W. He, J. Appl. Polym. Sci. 132, 41889-1–41889-10 (2015)
11.
go back to reference K. Yano, A. Usuka, A. Okada, T. Kurauchi, J. Polym. Sci. Part A Polym. Chem. 31, 2493–2498 (1993)CrossRef K. Yano, A. Usuka, A. Okada, T. Kurauchi, J. Polym. Sci. Part A Polym. Chem. 31, 2493–2498 (1993)CrossRef
12.
go back to reference J.C. Huang, Z.K. Zhu, X.D. Ma, X.F. Qian, J. Yin, J. Mater. Sci. 36, 871–877 (2001)CrossRef J.C. Huang, Z.K. Zhu, X.D. Ma, X.F. Qian, J. Yin, J. Mater. Sci. 36, 871–877 (2001)CrossRef
14.
go back to reference J. Kwon, J. Kim, J. Lee, P. Han, D. Park, H. Han, Polym. Compos. 35, 2214–2220 (2014)CrossRef J. Kwon, J. Kim, J. Lee, P. Han, D. Park, H. Han, Polym. Compos. 35, 2214–2220 (2014)CrossRef
15.
16.
17.
go back to reference R. Balasubramanian, K. Kumutha, M. Sarojadevi, Polym. Bull. 73, 309–330 (2016)CrossRef R. Balasubramanian, K. Kumutha, M. Sarojadevi, Polym. Bull. 73, 309–330 (2016)CrossRef
18.
go back to reference N.L. Silva, L.M. Goncalves, J. Mater. Sci. Mater. Electron. 24, 635–643 (2013)CrossRef N.L. Silva, L.M. Goncalves, J. Mater. Sci. Mater. Electron. 24, 635–643 (2013)CrossRef
20.
go back to reference Y.Y. Zhou, W.C. Zhou, R. Li, Y.C. Qing, J. Magn. Magn. Mater. 401, 251–258 (2016)CrossRef Y.Y. Zhou, W.C. Zhou, R. Li, Y.C. Qing, J. Magn. Magn. Mater. 401, 251–258 (2016)CrossRef
21.
22.
go back to reference S. Tamai, T. Kuroki, A. Shibuya, A. Yamaguchi, Polymer 42, 2373–2378 (2001)CrossRef S. Tamai, T. Kuroki, A. Shibuya, A. Yamaguchi, Polymer 42, 2373–2378 (2001)CrossRef
23.
go back to reference F.W. Wang, S.E. Hao, J.L. Li, J.T. Wang, Y. Gao, Y.F. Shen, S.Y. Wang, J. Mater. Sci. Mater. Electron. 25, 3543–3551 (2014)CrossRef F.W. Wang, S.E. Hao, J.L. Li, J.T. Wang, Y. Gao, Y.F. Shen, S.Y. Wang, J. Mater. Sci. Mater. Electron. 25, 3543–3551 (2014)CrossRef
24.
go back to reference Y.J. Li, S.E. Hao, X. Xia, J.L. Xu, X. Du, S.Y. Fang, X.W. Meng, J. Electron. Mater. 42, 745–751 (2013)CrossRef Y.J. Li, S.E. Hao, X. Xia, J.L. Xu, X. Du, S.Y. Fang, X.W. Meng, J. Electron. Mater. 42, 745–751 (2013)CrossRef
25.
28.
Metadata
Title
A novel connecting material: electrically conductive adhesives based on polyimide resin and conductive ceramic powders
Authors
Shengjie You
Yong Wu
Tiancheng Sun
Xingmai Huang
Liying Qi
Jiajing Zhang
Sue Hao
Publication date
09-06-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 10/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5127-8

Other articles of this Issue 10/2016

Journal of Materials Science: Materials in Electronics 10/2016 Go to the issue