Skip to main content
Top
Published in: Neural Computing and Applications 14/2022

06-03-2021 | S.I. : Healthcare Analytics

A novel explainable machine learning approach for EEG-based brain-computer interface systems

Authors: Cosimo Ieracitano, Nadia Mammone, Amir Hussain, Francesco Carlo Morabito

Published in: Neural Computing and Applications | Issue 14/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to \(89.65 \pm 5.29\%\) for HC versus RE and \(90.50 \pm 5.35\%\) for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478 Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478
2.
go back to reference Bi X, Zhao X, Huang H, Chen D, Ma Y (2020) Functional brain network classification for alzheimer’s disease detection with deep features and extreme learning machine. Cogn Comput 12(3):513–527CrossRef Bi X, Zhao X, Huang H, Chen D, Ma Y (2020) Functional brain network classification for alzheimer’s disease detection with deep features and extreme learning machine. Cogn Comput 12(3):513–527CrossRef
3.
go back to reference Brodmann K (2007) Brodmann’s: localisation in the cerebral cortex. Springer, Berlin Brodmann K (2007) Brodmann’s: localisation in the cerebral cortex. Springer, Berlin
4.
go back to reference Cai Z, Shao L (2019) Rgb-d scene classification via multi-modal feature learning. Cogn Comput 11(6):825–840CrossRef Cai Z, Shao L (2019) Rgb-d scene classification via multi-modal feature learning. Cogn Comput 11(6):825–840CrossRef
5.
6.
go back to reference Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14 Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14
7.
go back to reference Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33 Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33
8.
go back to reference Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):031001CrossRef Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):031001CrossRef
9.
go back to reference Doborjeh ZG, Doborjeh MG, Kasabov N (2018) Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cogn Comput 10(1):35–48CrossRef Doborjeh ZG, Doborjeh MG, Kasabov N (2018) Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cogn Comput 10(1):35–48CrossRef
10.
go back to reference Edelman BJ, Baxter B, He B (2015) EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans Biomed Eng 63(1):4–14CrossRef Edelman BJ, Baxter B, He B (2015) EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans Biomed Eng 63(1):4–14CrossRef
11.
go back to reference Fellous JM, Sapiro G, Rossi A, Mayberg HS, Ferrante M (2019) Explainable artificial intelligence for neuroscience: behavioral neurostimulation. Front Neurosci 13:1346CrossRef Fellous JM, Sapiro G, Rossi A, Mayberg HS, Ferrante M (2019) Explainable artificial intelligence for neuroscience: behavioral neurostimulation. Front Neurosci 13:1346CrossRef
12.
go back to reference Gao F, Huang T, Sun J, Wang J, Hussain A, Yang E (2019) A new algorithm for sar image target recognition based on an improved deep convolutional neural network. Cogn Comput 11(6):809–824CrossRef Gao F, Huang T, Sun J, Wang J, Hussain A, Yang E (2019) A new algorithm for sar image target recognition based on an improved deep convolutional neural network. Cogn Comput 11(6):809–824CrossRef
13.
go back to reference Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17 Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17
14.
go back to reference Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabilit 5(1):25CrossRef Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabilit 5(1):25CrossRef
15.
go back to reference Grosse-Wentrup M, Liefhold C, Gramann K, Buss M (2009) Beamforming in noninvasive brain–computer interfaces. IEEE Trans Biomed Eng 56(4):1209–1219CrossRef Grosse-Wentrup M, Liefhold C, Gramann K, Buss M (2009) Beamforming in noninvasive brain–computer interfaces. IEEE Trans Biomed Eng 56(4):1209–1219CrossRef
16.
go back to reference Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S et al (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabilit 4(1):46CrossRef Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S et al (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabilit 4(1):46CrossRef
17.
go back to reference Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18 Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18
18.
go back to reference Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society
19.
go back to reference Hermes D, Vansteensel MJ, Albers AM, Bleichner MG, Benedictus MR, Orellana CM, Aarnoutse E, Ramsey N (2011) Functional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfaces. J Neural Eng 8(2):025007CrossRef Hermes D, Vansteensel MJ, Albers AM, Bleichner MG, Benedictus MR, Orellana CM, Aarnoutse E, Ramsey N (2011) Functional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfaces. J Neural Eng 8(2):025007CrossRef
20.
go back to reference Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC (2019) A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings. Neurocomputing 323:96–107CrossRef Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC (2019) A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings. Neurocomputing 323:96–107CrossRef
21.
go back to reference Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw 123:176–190CrossRef Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw 123:176–190CrossRef
22.
go back to reference Kantak SS, Stinear JW, Buch ER, Cohen LG (2012) Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilit Neural Repair 26(3):282–292CrossRef Kantak SS, Stinear JW, Buch ER, Cohen LG (2012) Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilit Neural Repair 26(3):282–292CrossRef
23.
go back to reference Kasabov NK (2014) Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef Kasabov NK (2014) Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef
24.
go back to reference Kasabov NK (2019) Time-space, spiking neural networks and brain-inspired artificial intelligence. Springer, BerlinCrossRef Kasabov NK (2019) Time-space, spiking neural networks and brain-inspired artificial intelligence. Springer, BerlinCrossRef
25.
go back to reference Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
26.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
27.
go back to reference Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Map 28(11):1194–1205CrossRef Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Map 28(11):1194–1205CrossRef
28.
29.
go back to reference Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11 Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11
30.
go back to reference Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14 Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14
31.
go back to reference Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):031005CrossRef Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):031005CrossRef
32.
go back to reference Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478 Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478
33.
go back to reference Ma X, Liu W, Tao D, Zhou Y (2019) Ensemble p-laplacian regularization for scene image recognition. Cogn Comput 11(6):841–854CrossRef Ma X, Liu W, Tao D, Zhou Y (2019) Ensemble p-laplacian regularization for scene image recognition. Cogn Comput 11(6):841–854CrossRef
34.
go back to reference Malmivuo J, Plonsey R (1995) Bioelectromagnetism, principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkCrossRef Malmivuo J, Plonsey R (1995) Bioelectromagnetism, principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkCrossRef
35.
go back to reference Mammone N, Ieracitano C, Morabito FC (2020) A deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source level. Neural Netw 124:357–372CrossRef Mammone N, Ieracitano C, Morabito FC (2020) A deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source level. Neural Netw 124:357–372CrossRef
36.
go back to reference Mammone N, Morabito FC (2014) Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy 16(12):6553–6572CrossRef Mammone N, Morabito FC (2014) Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy 16(12):6553–6572CrossRef
37.
go back to reference Montavon G, Samek W, Müller KR (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Proc 73:1–15MathSciNetCrossRef Montavon G, Samek W, Müller KR (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Proc 73:1–15MathSciNetCrossRef
38.
go back to reference Müller-Putz GR, Schwarz A, Pereira J, Ofner P (2016) From classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approach. Prog Brain Res 228:39–70 ElsevierCrossRef Müller-Putz GR, Schwarz A, Pereira J, Ofner P (2016) From classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approach. Prog Brain Res 228:39–70 ElsevierCrossRef
39.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
40.
go back to reference Nunez PL, Srinivasan R (2006) Electric fields of the brain, the neurophysics of EEG. Oxford University Press, New YorkCrossRef Nunez PL, Srinivasan R (2006) Electric fields of the brain, the neurophysics of EEG. Oxford University Press, New YorkCrossRef
41.
go back to reference Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 12(8):e0182578CrossRef Ofner P, Schwarz A, Pereira J, Müller-Putz GR (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 12(8):e0182578CrossRef
42.
go back to reference Ofner P, Schwarz A, Pereira J, Wyss D, Wildburger R, Müller-Putz GR (2019) Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury. Sci Rep 9(1):7134CrossRef Ofner P, Schwarz A, Pereira J, Wyss D, Wildburger R, Müller-Putz GR (2019) Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury. Sci Rep 9(1):7134CrossRef
43.
go back to reference Powers DM (2011) Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol 2(1):37–63MathSciNet Powers DM (2011) Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol 2(1):37–63MathSciNet
44.
go back to reference Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17 Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17
45.
go back to reference Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J (2019) Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng 16(5):051001CrossRef Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J (2019) Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng 16(5):051001CrossRef
46.
go back to reference Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101 Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101
47.
go back to reference Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217 Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217
48.
go back to reference Sun X, Lv M (2019) Facial expression recognition based on a hybrid model combining deep and shallow features. Cogn Comput 11(4):587–597CrossRef Sun X, Lv M (2019) Facial expression recognition based on a hybrid model combining deep and shallow features. Cogn Comput 11(4):587–597CrossRef
49.
go back to reference Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8 Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8
50.
go back to reference Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10 Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10
51.
go back to reference Vato A, Bonzano L, Chiappalone M, Cicero S, Morabito F, Novellino A, Stillo G (2004) Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing 58:1153–1161CrossRef Vato A, Bonzano L, Chiappalone M, Cicero S, Morabito F, Novellino A, Stillo G (2004) Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing 58:1153–1161CrossRef
52.
go back to reference Vecchiato G, Del Vecchio M, Ascari L, Antopolskiy S, Deon F, Kubin L, Ambeck-Madsen J, Rizzolatti G, Avanzini P (2019) Electroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulation. Brain Res 1716:16–26CrossRef Vecchiato G, Del Vecchio M, Ascari L, Antopolskiy S, Deon F, Kubin L, Ambeck-Madsen J, Rizzolatti G, Avanzini P (2019) Electroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulation. Brain Res 1716:16–26CrossRef
53.
go back to reference Wagstaff K, Cardie C, Rogers S, Schrödl S et al (2001) Constrained k-means clustering with background knowledge. Icml 1:577–584 Wagstaff K, Cardie C, Rogers S, Schrödl S et al (2001) Constrained k-means clustering with background knowledge. Icml 1:577–584
54.
go back to reference Wang Z, Healy G, Smeaton AF, Ward TE (2020) Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cognit Comput 12(1):13–24CrossRef Wang Z, Healy G, Smeaton AF, Ward TE (2020) Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cognit Comput 12(1):13–24CrossRef
55.
go back to reference Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12 Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12
56.
go back to reference Zama T, Shimada S (2015) Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation. Sci Rep 5(1):1–9CrossRef Zama T, Shimada S (2015) Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation. Sci Rep 5(1):1–9CrossRef
57.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833
58.
go back to reference Zeng H, Song A (2016) Optimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interface. IEEE Trans Neural Netw Learn Syst 27(11):2301–2313MathSciNetCrossRef Zeng H, Song A (2016) Optimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interface. IEEE Trans Neural Netw Learn Syst 27(11):2301–2313MathSciNetCrossRef
59.
go back to reference Zheng J, Cai F, Chen W, Feng C, Chen H (2019) Hierarchical neural representation for document classification. Cogn Comput 11(2):317–327CrossRef Zheng J, Cai F, Chen W, Feng C, Chen H (2019) Hierarchical neural representation for document classification. Cogn Comput 11(2):317–327CrossRef
Metadata
Title
A novel explainable machine learning approach for EEG-based brain-computer interface systems
Authors
Cosimo Ieracitano
Nadia Mammone
Amir Hussain
Francesco Carlo Morabito
Publication date
06-03-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05624-w

Other articles of this Issue 14/2022

Neural Computing and Applications 14/2022 Go to the issue

Premium Partner