Skip to main content
Top
Published in: Neural Computing and Applications 12/2020

24-06-2019 | Original Article

A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals

Authors: Xiaomao Fan, Zhejing Hu, Ruxin Wang, Liyan Yin, Ye Li, Yunpeng Cai

Published in: Neural Computing and Applications | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Atrial fibrillation (AF) is one of the most common arrhythmia diseases, the incidence of which is ascendant with age increase. What’s more, AF is a high-risk factor for stroke, ischemia myocardial and other malignant cardiovascular diseases, which would threaten people’s life significantly. Using a mobile device to screen AF segments is an effective way to reduce the mortality and morbidity of malignant cardiovascular diseases. However, most of existing AF detection methods mainly centered on clinical resting ECG signals and were incapable of processing mobile ECG signals with low signal-to-noise ratio which collected by mobile devices. In this paper, we take advantage of a fully convolutional network variant named U-Net for heart rhythmic information capturing by locating R peak positions as well as calculating RR intervals and a 34-layer residual network for waveform morphological features capturing from ECG signals. Combining both rhythmic information and waveform morphological features, two-layer fully connected networks are employed successively to discriminate AF, normal sinus rhythm , and other abnormal rhythm (other). The extensive experimental results show that our proposed AF our proposed AF screening framework named FRM-CNN can achieve \(F_{1}\) value of 85.08 ± 0.99% and accuracy of \(87.22 \pm 0.71\)% on identifying AF segments well without handcraft engineering. Compared with the cutting-edge AF detection methods, the FRM-CNN has more superior performance on monitoring people’s health conditions with mobile devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Camm AJ, Kirchhof P, Lip GYH et al (2010) Guidelines for the management of atrial fibrillation. Eur Heart J 31(19):2369–2429CrossRef Camm AJ, Kirchhof P, Lip GYH et al (2010) Guidelines for the management of atrial fibrillation. Eur Heart J 31(19):2369–2429CrossRef
2.
go back to reference Rahman F, Kwan GF, Benjamin EJ (2014) Global epidemiology of atrial fibrillation. Nat Rev Cardiol 11(11):639CrossRef Rahman F, Kwan GF, Benjamin EJ (2014) Global epidemiology of atrial fibrillation. Nat Rev Cardiol 11(11):639CrossRef
3.
go back to reference Heeringa J, van der Kuip DAM, Hofman A et al (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 27(8):949–953CrossRef Heeringa J, van der Kuip DAM, Hofman A et al (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 27(8):949–953CrossRef
4.
go back to reference Hassan AR et al (2016) Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating. Biocybern Biomed Eng 36(1):256–266CrossRef Hassan AR et al (2016) Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating. Biocybern Biomed Eng 36(1):256–266CrossRef
5.
go back to reference Hassan AR et al (2017) An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing 235:122–130CrossRef Hassan AR et al (2017) An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing 235:122–130CrossRef
6.
go back to reference Hassan AR et al (2016) Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine. Biomed Phys Eng Exp 2(3):035003MathSciNetCrossRef Hassan AR et al (2016) Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine. Biomed Phys Eng Exp 2(3):035003MathSciNetCrossRef
7.
go back to reference Hassan AR (2015) Automatic screening of obstructive sleep apnea from single-lead electrocardiogram. In: 2015 international conference on electrical engineering and information communication technology (ICEEICT). IEEE Hassan AR (2015) Automatic screening of obstructive sleep apnea from single-lead electrocardiogram. In: 2015 international conference on electrical engineering and information communication technology (ICEEICT). IEEE
8.
go back to reference Hassan AR (2015) A comparative study of various classifiers for automated sleep apnea screening based on single-lead electrocardiogram. In: 2015 International conference on electrical and electronic engineering (ICEEE). IEEE Hassan AR (2015) A comparative study of various classifiers for automated sleep apnea screening based on single-lead electrocardiogram. In: 2015 International conference on electrical and electronic engineering (ICEEE). IEEE
9.
go back to reference Guidera SA, Steinberg JS (1993) The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation. J Am Coll Cardiol 21(7):1645–1651CrossRef Guidera SA, Steinberg JS (1993) The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation. J Am Coll Cardiol 21(7):1645–1651CrossRef
10.
go back to reference Mehta S, Lingayat N, Sanghvi S (2009) Detection and delineation of P and T waves in 12-lead electrocardiograms. Exp Syst 26(1):125–143CrossRef Mehta S, Lingayat N, Sanghvi S (2009) Detection and delineation of P and T waves in 12-lead electrocardiograms. Exp Syst 26(1):125–143CrossRef
11.
go back to reference Dilaveris PE, Gialafos JE (2001) P-wave dispersion: a novel predictor of paroxysmal atrial fibrillation. Ann Noninvasive Electrocardiol 6(2):159–165CrossRef Dilaveris PE, Gialafos JE (2001) P-wave dispersion: a novel predictor of paroxysmal atrial fibrillation. Ann Noninvasive Electrocardiol 6(2):159–165CrossRef
12.
go back to reference Aytemir K et al (2000) P wave dispersion on 12-lead electrocardiography in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 23(7):1109–1112CrossRef Aytemir K et al (2000) P wave dispersion on 12-lead electrocardiography in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 23(7):1109–1112CrossRef
13.
go back to reference Zhou X et al (2014) Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed Eng Online 13(1):18CrossRef Zhou X et al (2014) Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed Eng Online 13(1):18CrossRef
14.
go back to reference Huang C et al (2011) A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans Biomed Eng 58(4):1113–1119CrossRef Huang C et al (2011) A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans Biomed Eng 58(4):1113–1119CrossRef
15.
go back to reference Tateno K, Glass L (2000) A method for detection of atrial fibrillation using RR intervals. Comput Cardiol 27:391–394 Tateno K, Glass L (2000) A method for detection of atrial fibrillation using RR intervals. Comput Cardiol 27:391–394
16.
go back to reference Lian J, Wang L, Muessig D (2011) A simple method to detect atrial fibrillation using RR intervals. Am J Cardiol 107(10):1494–1497CrossRef Lian J, Wang L, Muessig D (2011) A simple method to detect atrial fibrillation using RR intervals. Am J Cardiol 107(10):1494–1497CrossRef
17.
go back to reference Dash S et al (2009) Automatic real time detection of atrial fibrillation. Ann Biomed Eng 37(9):1701–1709CrossRef Dash S et al (2009) Automatic real time detection of atrial fibrillation. Ann Biomed Eng 37(9):1701–1709CrossRef
18.
go back to reference Billeci L et al (2017) Detection of AF and other rhythms Using RR variability and ECG spectral measures. Computing 44:1 Billeci L et al (2017) Detection of AF and other rhythms Using RR variability and ECG spectral measures. Computing 44:1
19.
go back to reference Dai H, Jiang S, Li Y (2013) Atrial activity extraction from single lead ECG recordings: evaluation of two novel methods. Comput Biol Med 43(3):176–183CrossRef Dai H, Jiang S, Li Y (2013) Atrial activity extraction from single lead ECG recordings: evaluation of two novel methods. Comput Biol Med 43(3):176–183CrossRef
20.
go back to reference Fan X et al (2018) Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J Biomed Health Inform 22(6):1744–1753CrossRef Fan X et al (2018) Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J Biomed Health Inform 22(6):1744–1753CrossRef
21.
go back to reference Pourbabaee B, Mehrsan Javan R, Khashayar K (2017) Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 99:1–10 Pourbabaee B, Mehrsan Javan R, Khashayar K (2017) Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 99:1–10
22.
go back to reference Daqrouq K et al (2014) Neural network and wavelet average framing percentage energy for atrial fibrillation classification. Comput Methods Prog Biomed 113(3):919–926CrossRef Daqrouq K et al (2014) Neural network and wavelet average framing percentage energy for atrial fibrillation classification. Comput Methods Prog Biomed 113(3):919–926CrossRef
23.
go back to reference Yıldırım Ö et al (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102:411–420CrossRef Yıldırım Ö et al (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102:411–420CrossRef
24.
go back to reference Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25(1):65CrossRef Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25(1):65CrossRef
25.
go back to reference Acharya UR et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef Acharya UR et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef
26.
go back to reference Andreotti F et al (2017) Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. Computing 44:1 Andreotti F et al (2017) Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. Computing 44:1
27.
go back to reference Chandra BS et al (2017) Atrial fibrillation detection using convolutional neural networks. Computing 44:1 Chandra BS et al (2017) Atrial fibrillation detection using convolutional neural networks. Computing 44:1
28.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
29.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241
31.
go back to reference Zhang H et al (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13(2):520–531CrossRef Zhang H et al (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13(2):520–531CrossRef
32.
go back to reference Ji Y, Zhang H, Jonathan Wu QM (2018) Salient object detection via multi-scale attention CNN. Neurocomputing 322:130–140CrossRef Ji Y, Zhang H, Jonathan Wu QM (2018) Salient object detection via multi-scale attention CNN. Neurocomputing 322:130–140CrossRef
33.
go back to reference Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef
34.
go back to reference He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
35.
go back to reference Pan J, Tompkins W (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236CrossRef Pan J, Tompkins W (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236CrossRef
36.
go back to reference Arzeno N, Deng Z, Poon C (2008) Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng 55(2):478–484CrossRef Arzeno N, Deng Z, Poon C (2008) Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng 55(2):478–484CrossRef
37.
go back to reference Moraes J et al (2002) A QRS complex detection algorithm using electrocardiogram leads. In: Computers in cardiology. IEEE, pp 205–208 Moraes J et al (2002) A QRS complex detection algorithm using electrocardiogram leads. In: Computers in cardiology. IEEE, pp 205–208
38.
go back to reference Elgendi M et al (2008) A robust QRS complex detection algorithm using dynamic thresholds. In: International symposium on computer science and its applications. IEEE, pp 153–158 Elgendi M et al (2008) A robust QRS complex detection algorithm using dynamic thresholds. In: International symposium on computer science and its applications. IEEE, pp 153–158
39.
go back to reference Vollmer M, Sodmann P, Caanitz L et al (2017) Can supervised learning be used to classify cardiac rhythms? Computing 44:1 Vollmer M, Sodmann P, Caanitz L et al (2017) Can supervised learning be used to classify cardiac rhythms? Computing 44:1
40.
go back to reference Kropf M, Hayn D, Schreier G (2017) ECG classification based on time and frequency domain features using random forests. Computing 44:1 Kropf M, Hayn D, Schreier G (2017) ECG classification based on time and frequency domain features using random forests. Computing 44:1
41.
go back to reference Datta S, Puri C, Mukherjee A et al (2017) Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier. Computing 44:1 Datta S, Puri C, Mukherjee A et al (2017) Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier. Computing 44:1
42.
go back to reference Plesinger F, Nejedly P, Viscor I et al (2017) Automatic detection of atrial fibrillation and other arrhythmias in Holter ECG recordings using rhythm features and neural networks. Computing 44:1 Plesinger F, Nejedly P, Viscor I et al (2017) Automatic detection of atrial fibrillation and other arrhythmias in Holter ECG recordings using rhythm features and neural networks. Computing 44:1
Metadata
Title
A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals
Authors
Xiaomao Fan
Zhejing Hu
Ruxin Wang
Liyan Yin
Ye Li
Yunpeng Cai
Publication date
24-06-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04318-2

Other articles of this Issue 12/2020

Neural Computing and Applications 12/2020 Go to the issue

S.I. : Hybrid Artificial Intelligence and Machine Learning Technologies

Deep learning-based sign language recognition system for static signs

Premium Partner