Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2020

26-05-2020 | Original Research

A novel iterative solution for time-fractional Boussinesq equation by reproducing kernel method

Authors: Mehmet Giyas Sakar, Onur Saldır

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, iterative reproducing kernel method (RKM) will be applied in order to observe the effect of the method on numerical solutions of fractional order Boussinesq equation. Hilbert spaces and their kernel functions, linear operators and base functions which are necessary to obtain the reproducing kernel function are clearly explained. Iterative solution is constituted in a serial form by using reproducing kernel function. Then convergence of RKM solution is shown with lemma and theorem. Two problems, “good” Boussinesq and generalized Boussinesq equations, are examined by using RKM for different fractional values. Results are presented with tables and graphics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)MATH Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)MATH
2.
go back to reference Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Sect. 17, 55–108 (1872)MathSciNetMATH Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Sect. 17, 55–108 (1872)MathSciNetMATH
3.
go back to reference Boussinesq, M.: Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants á l’Académie des Sciences Inst. France, pp. 1-680 (1877) Boussinesq, M.: Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants á l’Académie des Sciences Inst. France, pp. 1-680 (1877)
4.
go back to reference Kalantorov, V.K., Ladyzhenskaya, O.A.: The occurence of collapse for quailinear equation of parabolic and hyperbolic types. J. Soviet Math. 10, 53–70 (1978)CrossRef Kalantorov, V.K., Ladyzhenskaya, O.A.: The occurence of collapse for quailinear equation of parabolic and hyperbolic types. J. Soviet Math. 10, 53–70 (1978)CrossRef
5.
go back to reference Lin, Q., Wu, Y.H., Loxton, R.: On the Cauchy problem for a generalized Boussinesq equation. J. Math. Anal. Appl. 353, 186–195 (2009)MathSciNetCrossRef Lin, Q., Wu, Y.H., Loxton, R.: On the Cauchy problem for a generalized Boussinesq equation. J. Math. Anal. Appl. 353, 186–195 (2009)MathSciNetCrossRef
6.
go back to reference Xue, R.: The initial-boundary value problem for the “good” Boussinesq equation on the bounded domain. J. Math. Anal. Appl. 343, 975–995 (2008)MathSciNetCrossRef Xue, R.: The initial-boundary value problem for the “good” Boussinesq equation on the bounded domain. J. Math. Anal. Appl. 343, 975–995 (2008)MathSciNetCrossRef
7.
go back to reference Brugnano, L., Gurioli, G., Zhang, C.: Spectrally accurate energy-preserving methods for the numerical solution of the “good” Boussinesq equation. Numer. Methods Partial Differ. Equ. 35, 1343–1362 (2019)MathSciNetCrossRef Brugnano, L., Gurioli, G., Zhang, C.: Spectrally accurate energy-preserving methods for the numerical solution of the “good” Boussinesq equation. Numer. Methods Partial Differ. Equ. 35, 1343–1362 (2019)MathSciNetCrossRef
8.
go back to reference Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5, 946–957 (1984)MathSciNetCrossRef Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5, 946–957 (1984)MathSciNetCrossRef
9.
go back to reference Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29, 1964–1968 (1988)MathSciNetCrossRef Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29, 1964–1968 (1988)MathSciNetCrossRef
11.
go back to reference Yan, J., Zhang, Z., Zhao, T., Liang, D.: High-order energy-preserving schemes for the improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 34, 1145–1165 (2018)MathSciNetCrossRef Yan, J., Zhang, Z., Zhao, T., Liang, D.: High-order energy-preserving schemes for the improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 34, 1145–1165 (2018)MathSciNetCrossRef
12.
go back to reference Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)MathSciNetCrossRef Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)MathSciNetCrossRef
13.
go back to reference Bratsos, A.G.: Solitary-wave propagation and interactions for the “good” Boussinesq equation. Int. J. Comput. Math. 85, 143–1440 (2008)MathSciNetCrossRef Bratsos, A.G.: Solitary-wave propagation and interactions for the “good” Boussinesq equation. Int. J. Comput. Math. 85, 143–1440 (2008)MathSciNetCrossRef
14.
go back to reference El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation. Appl. Numer. Math. 45, 161–173 (2003)MathSciNetCrossRef El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation. Appl. Numer. Math. 45, 161–173 (2003)MathSciNetCrossRef
15.
go back to reference Karaagac, B., Ucar, Y., Esen, A.: Numerical solutions of the improved Boussinesq equation by the Galerkin quadratic B-spline finite element method. Filomat 32, 5573–5583 (2018)MathSciNetCrossRef Karaagac, B., Ucar, Y., Esen, A.: Numerical solutions of the improved Boussinesq equation by the Galerkin quadratic B-spline finite element method. Filomat 32, 5573–5583 (2018)MathSciNetCrossRef
16.
go back to reference Zaremba, S.: Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique. Bulletin International de l’Académie des Sciences de Cracovie, pp. 125–195 (1908) Zaremba, S.: Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique. Bulletin International de l’Académie des Sciences de Cracovie, pp. 125–195 (1908)
18.
go back to reference Schwartz, L.: Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Anal. Math. 13, 115–256 (1964)CrossRef Schwartz, L.: Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Anal. Math. 13, 115–256 (1964)CrossRef
19.
go back to reference Saitoh, S., Sawano, Y.: Theory of reproducing kernels and applications. pp. 1–452. Springer, Singapore (2016) Saitoh, S., Sawano, Y.: Theory of reproducing kernels and applications. pp. 1–452. Springer, Singapore (2016)
20.
go back to reference Cui, M.G., Lin, Y.Z.: Nonlinear Numercial Analysis in the Reproducing Kernel Space, pp. 1–226. Nova Science Publisher, New York (2009) Cui, M.G., Lin, Y.Z.: Nonlinear Numercial Analysis in the Reproducing Kernel Space, pp. 1–226. Nova Science Publisher, New York (2009)
21.
go back to reference Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)MathSciNetMATH Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)MathSciNetMATH
22.
go back to reference Abu Arqub, O., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94, 1819–1834 (2018)CrossRef Abu Arqub, O., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94, 1819–1834 (2018)CrossRef
23.
go back to reference Yao, H.: Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition. Numer. Methods Partial Differ. Equ. 27, 867–886 (2011)MathSciNetCrossRef Yao, H.: Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition. Numer. Methods Partial Differ. Equ. 27, 867–886 (2011)MathSciNetCrossRef
24.
go back to reference Wang, Y., Du, M., Tan, F., Li, Z., Nie, T.: Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl. Math. Comput. 219, 5918–5925 (2013)MathSciNetMATH Wang, Y., Du, M., Tan, F., Li, Z., Nie, T.: Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl. Math. Comput. 219, 5918–5925 (2013)MathSciNetMATH
25.
go back to reference Sakar, M.G., Akgül, A., Baleanu, D.: On solutions of fractional Riccati differential equations. Adv. Diff. Equ. 39, 1–10 (2017)MathSciNetMATH Sakar, M.G., Akgül, A., Baleanu, D.: On solutions of fractional Riccati differential equations. Adv. Diff. Equ. 39, 1–10 (2017)MathSciNetMATH
26.
go back to reference Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)MathSciNetCrossRef Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)MathSciNetCrossRef
27.
go back to reference Jiang, W., Lin, Y.: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul. 16, 3639–3645 (2011)MathSciNetCrossRef Jiang, W., Lin, Y.: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul. 16, 3639–3645 (2011)MathSciNetCrossRef
28.
go back to reference Mohammadi, M., Mokhtari, R., Panahipour, H.: A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers equations. Eng. Anal. Bound. Elem. 37, 1642–1652 (2013)MathSciNetCrossRef Mohammadi, M., Mokhtari, R., Panahipour, H.: A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers equations. Eng. Anal. Bound. Elem. 37, 1642–1652 (2013)MathSciNetCrossRef
29.
go back to reference Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 34, 1577–1597 (2018)CrossRef Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 34, 1577–1597 (2018)CrossRef
30.
go back to reference Sakar, M.G., Saldır, O., Erdogan, F.: An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method. Comput. Appl. Math. 37, 5951–5964 (2018)MathSciNetCrossRef Sakar, M.G., Saldır, O., Erdogan, F.: An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method. Comput. Appl. Math. 37, 5951–5964 (2018)MathSciNetCrossRef
31.
go back to reference Sakar, M.G., Saldır, O., Akgül, A.: A novel technique for fractional Bagley-Torvik equation. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89, 539–545 (2019)MathSciNetCrossRef Sakar, M.G., Saldır, O., Akgül, A.: A novel technique for fractional Bagley-Torvik equation. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89, 539–545 (2019)MathSciNetCrossRef
32.
go back to reference Saldır, O., Sakar, M.G., Erdogan, F.: Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate. Comput. Appl. Math. 198, 1–23 (2019)MathSciNetMATH Saldır, O., Sakar, M.G., Erdogan, F.: Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate. Comput. Appl. Math. 198, 1–23 (2019)MathSciNetMATH
33.
go back to reference Sakar, M.G., Saldır, O., Erdogan, F.: A hybrid method for singularly perturbed convection–diffusion equation. Int. J. Appl. Comput. Math. 135, 1–17 (2019)MathSciNetMATH Sakar, M.G., Saldır, O., Erdogan, F.: A hybrid method for singularly perturbed convection–diffusion equation. Int. J. Appl. Comput. Math. 135, 1–17 (2019)MathSciNetMATH
34.
go back to reference Podlubny, I.: Fractional Differential Equations, pp. 1–340. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations, pp. 1–340. Academic Press, New York (1999)MATH
35.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, pp. 1–247. Springer, Berlin (2010)CrossRef Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, pp. 1–247. Springer, Berlin (2010)CrossRef
36.
go back to reference Arqub, O.A., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations. Chaos Solitons Fractals 126, 394–402 (2019)MathSciNetCrossRef Arqub, O.A., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations. Chaos Solitons Fractals 126, 394–402 (2019)MathSciNetCrossRef
37.
go back to reference Arqub, O.A.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing kernel method. Int. J. Numer. Methods Heat Fluid Flow 29, 1–23 (2019) Arqub, O.A.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing kernel method. Int. J. Numer. Methods Heat Fluid Flow 29, 1–23 (2019)
38.
go back to reference Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 1–28 (2018)MathSciNetCrossRef Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 1–28 (2018)MathSciNetCrossRef
39.
go back to reference Yang, H.: Homotopy analysis method for the time-fractional Boussinesq equation. Univ. J. Math. Appl. 3, 12–18 (2020) Yang, H.: Homotopy analysis method for the time-fractional Boussinesq equation. Univ. J. Math. Appl. 3, 12–18 (2020)
40.
go back to reference Zhang, H., Jiang, X., Zhao, M., Zheng, R.: Spectral method for solving the time fractional Boussinesq equation. Appl. Math. Lett. 85, 164–170 (2018)MathSciNetCrossRef Zhang, H., Jiang, X., Zhao, M., Zheng, R.: Spectral method for solving the time fractional Boussinesq equation. Appl. Math. Lett. 85, 164–170 (2018)MathSciNetCrossRef
41.
go back to reference Qi, W.: Numerical solutions of fractional Boussinesq equation. Commun. Theor. Phys. 47, 413–420 (2019)CrossRef Qi, W.: Numerical solutions of fractional Boussinesq equation. Commun. Theor. Phys. 47, 413–420 (2019)CrossRef
Metadata
Title
A novel iterative solution for time-fractional Boussinesq equation by reproducing kernel method
Authors
Mehmet Giyas Sakar
Onur Saldır
Publication date
26-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2020
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01353-4

Other articles of this Issue 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Go to the issue

Premium Partner