Skip to main content
Top
Published in: Wireless Personal Communications 3/2017

04-02-2017

A Novel Low-Complex Antenna Selection Scheme for Beyond 4G (B4G) Systems

Authors: M. Arthi, P. Arulmozhivarman

Published in: Wireless Personal Communications | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi input multi output (MIMO) based transmission modes are very popular in 4G and beyond wireless standards. It offers high quality services at the cost of increased hardware and signal processing complexity. Antenna selection is one of the suitable solutions to overcome the limitations of MIMO scheme. Antenna selection schemes are becoming very popular in the recent wireless techniques like massive MIMO, cognitive radio, multi-hop relay networks (MHR) and wireless local area networks. Instead of using all the available antennas for transmission and reception, antenna selection schemes select good antennas based on the channel state information (CSI). To attain the full benefits of transmitter and joint antenna selection schemes, accurate CSI is required at the transmitter side. The non-zero feedback delay and time varying channel conditions, make the CSI available at the transmitter outdated, which also affects the antenna selection process. In this work, we have derived the closed form average symbol error rate (SER) expression of M-ary phase shift keying (PSK) modulation, for three different antenna selection schemes, by considering the effect of delayed CSI. All these derived expressions are the function of correlation between CSI at the receiver and delayed CSI at the transmitter. The simulation results show that the antenna selection gain decreases with the decrease in correlation. It is also observed that scheme 1 based antenna selection is optimal under delayed CSI conditions, for different constellations and more suited for future wireless standards.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.CrossRef Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.CrossRef
2.
go back to reference Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRef Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRef
3.
go back to reference LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 8.4.0 Release 8), 2008. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 8.4.0 Release 8), 2008.
4.
go back to reference LTE; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced), (3GPP TR 36.912 version 10.0.0 Release 10), 2011. LTE; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced), (3GPP TR 36.912 version 10.0.0 Release 10), 2011.
5.
go back to reference Sesia, S., Toufik, I., & Baker, M. (2009). LTE—The UMTS long term evolution from theory to practice. West Sussex: Wiley.CrossRef Sesia, S., Toufik, I., & Baker, M. (2009). LTE—The UMTS long term evolution from theory to practice. West Sussex: Wiley.CrossRef
6.
go back to reference Hu, B. B., Liu, Y. A., Gang, X. I. E., Gao, J. C., & Yang, Y. L. (2014). Energy efficiency of massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 21(6), 1–8.CrossRef Hu, B. B., Liu, Y. A., Gang, X. I. E., Gao, J. C., & Yang, Y. L. (2014). Energy efficiency of massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 21(6), 1–8.CrossRef
7.
go back to reference Yuksel, M., & Erkip, E. (2007). Multiple-antenna cooperative wireless systems: A diversity–multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393.MathSciNetCrossRefMATH Yuksel, M., & Erkip, E. (2007). Multiple-antenna cooperative wireless systems: A diversity–multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393.MathSciNetCrossRefMATH
8.
go back to reference Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communications, 6(5), 1774–1786.CrossRef Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communications, 6(5), 1774–1786.CrossRef
9.
go back to reference Muñoz-Medina, O., Vidal, J., & Agustín, A. (2007). Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing, 55(6), 2593–2604.MathSciNetCrossRef Muñoz-Medina, O., Vidal, J., & Agustín, A. (2007). Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing, 55(6), 2593–2604.MathSciNetCrossRef
10.
go back to reference Tang, X., & Hua, Y. (2007). Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6(4), 1398–1407.MathSciNetCrossRef Tang, X., & Hua, Y. (2007). Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6(4), 1398–1407.MathSciNetCrossRef
11.
go back to reference Osseiran, A., Hardouin, E., Gouraud, A., Boldi, M., Cosovic, I., Gosse, K., et al. (2009). The road to IMT-advanced communication systems: State-of-the-art and innovation areas addressed by the WINNER + project. IEEE Communications Magazine, 47(6), 38–47.CrossRef Osseiran, A., Hardouin, E., Gouraud, A., Boldi, M., Cosovic, I., Gosse, K., et al. (2009). The road to IMT-advanced communication systems: State-of-the-art and innovation areas addressed by the WINNER + project. IEEE Communications Magazine, 47(6), 38–47.CrossRef
12.
go back to reference Torabi, M. (2008). Antenna selection for MIMO-OFDM systems. Signal Processing, 88(10), 2431–2441.CrossRefMATH Torabi, M. (2008). Antenna selection for MIMO-OFDM systems. Signal Processing, 88(10), 2431–2441.CrossRefMATH
13.
go back to reference Nagaraj, S., & Xiao, J. (2010). Best antenna selection for coded SIMO–OFDM. Signal Processing, 90(1), 391–394.CrossRef Nagaraj, S., & Xiao, J. (2010). Best antenna selection for coded SIMO–OFDM. Signal Processing, 90(1), 391–394.CrossRef
14.
go back to reference Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24(6), 1046–1051.CrossRef Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24(6), 1046–1051.CrossRef
15.
go back to reference Lu, H. Y. (2012). Particle swarm optimization assisted joint transmit/receive antenna combining for multiple relays in cooperative MIMO systems. Applied Soft Computing, 12(7), 1865–1874.CrossRef Lu, H. Y. (2012). Particle swarm optimization assisted joint transmit/receive antenna combining for multiple relays in cooperative MIMO systems. Applied Soft Computing, 12(7), 1865–1874.CrossRef
16.
go back to reference Katiyar, H., & Bhattacharjee, R. (2012). On the performance of decode-and-forward relaying with multi-antenna destination. AEU-International Journal of Electronics and Communications, 66(1), 1–6.CrossRef Katiyar, H., & Bhattacharjee, R. (2012). On the performance of decode-and-forward relaying with multi-antenna destination. AEU-International Journal of Electronics and Communications, 66(1), 1–6.CrossRef
17.
go back to reference Gorokhov, A., Gore, D., & Paulraj, A. J. (2003). Receive antenna selection for MIMO spatial multiplexing: Theory and algorithms. IEEE Transactions on Signal Processing, 51(11), 2796–2807.MathSciNetCrossRefMATH Gorokhov, A., Gore, D., & Paulraj, A. J. (2003). Receive antenna selection for MIMO spatial multiplexing: Theory and algorithms. IEEE Transactions on Signal Processing, 51(11), 2796–2807.MathSciNetCrossRefMATH
18.
go back to reference Gore, D., & Paulraj, A. J. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRef Gore, D., & Paulraj, A. J. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRef
19.
go back to reference Lu, H. Y., & Fang, W. H. (2007). Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm. IEEE Antennas and Wireless Propagation Letters, 6, 588–591.CrossRef Lu, H. Y., & Fang, W. H. (2007). Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm. IEEE Antennas and Wireless Propagation Letters, 6, 588–591.CrossRef
20.
go back to reference Sanayei, S., & Nosratinia, A. (2007). Capacity of MIMO channels with antenna selection. IEEE Transactions on Information Theory, 53(11), 4356–4362.MathSciNetCrossRefMATH Sanayei, S., & Nosratinia, A. (2007). Capacity of MIMO channels with antenna selection. IEEE Transactions on Information Theory, 53(11), 4356–4362.MathSciNetCrossRefMATH
21.
go back to reference Gharavi-Alkhansari, M., & Gershman, A. B. (2004). Fast antenna subset selection in MIMO systems. IEEE Transactions on Signal Processing, 52(2), 339–347.MathSciNetCrossRef Gharavi-Alkhansari, M., & Gershman, A. B. (2004). Fast antenna subset selection in MIMO systems. IEEE Transactions on Signal Processing, 52(2), 339–347.MathSciNetCrossRef
22.
go back to reference Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.CrossRef Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.CrossRef
23.
go back to reference Chen, Z., Collings, I. B., Zhou, Z., & Vucetic, B. (2009). Transmit antenna selection schemes with reduced feedback rate. IEEE Transactions on Wireless Communications, 8(2), 1006–1016.CrossRef Chen, Z., Collings, I. B., Zhou, Z., & Vucetic, B. (2009). Transmit antenna selection schemes with reduced feedback rate. IEEE Transactions on Wireless Communications, 8(2), 1006–1016.CrossRef
24.
go back to reference Choi, Y. S., Molisch, A. F., Win, M. Z., & Winters, J. H. (2003). Fast algorithms for antenna selection in MIMO systems. In Vehicular technology conference, VTC 2003-Fall. (Vol. 3, pp. 1733–1737). Choi, Y. S., Molisch, A. F., Win, M. Z., & Winters, J. H. (2003). Fast algorithms for antenna selection in MIMO systems. In Vehicular technology conference, VTC 2003-Fall. (Vol. 3, pp. 1733–1737).
25.
go back to reference You, C., Hwang, I., Kim, Y., & Tarokh, V. (2009). Dual antenna selection algorithms and feedback strategies with reduced complexity for multiple-input multiple-output systems. Microwaves, Antennas and Propagation, IET, 3(6), 906–916.CrossRef You, C., Hwang, I., Kim, Y., & Tarokh, V. (2009). Dual antenna selection algorithms and feedback strategies with reduced complexity for multiple-input multiple-output systems. Microwaves, Antennas and Propagation, IET, 3(6), 906–916.CrossRef
26.
go back to reference Chen, Z., Yuan, J., Vucetic, B., & Zhou, Z. (2003). Performance of Alamouti scheme with transmit antenna selection. Electronics Letters, 39(23), 1666–1668.CrossRef Chen, Z., Yuan, J., Vucetic, B., & Zhou, Z. (2003). Performance of Alamouti scheme with transmit antenna selection. Electronics Letters, 39(23), 1666–1668.CrossRef
27.
go back to reference Chen, Z., Vucetic, B., & Yuan, J. (2003). Space-time trellis codes with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef Chen, Z., Vucetic, B., & Yuan, J. (2003). Space-time trellis codes with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef
28.
go back to reference Badic, B., Fuxjäger, P., & Weinrichter, H. (2004). Performance of quasi-orthogonal space-time code with antenna selection. Electronics Letters, 40(20), 1282–1284.CrossRef Badic, B., Fuxjäger, P., & Weinrichter, H. (2004). Performance of quasi-orthogonal space-time code with antenna selection. Electronics Letters, 40(20), 1282–1284.CrossRef
29.
go back to reference Fan, B., Sun, W., & Shen, D. (2006). Performance analysis of orthogonal space-time block coding with reduced-complexity antenna selection. In Wireless, mobile and multimedia networks, 2006 IET international conference (pp. 1–4). Fan, B., Sun, W., & Shen, D. (2006). Performance analysis of orthogonal space-time block coding with reduced-complexity antenna selection. In Wireless, mobile and multimedia networks, 2006 IET international conference (pp. 1–4).
30.
go back to reference Gorokhov, A. (2002). Antenna selection algorithms for MEA transmission systems. In IEEE international conference acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. 2857–2860). Gorokhov, A. (2002). Antenna selection algorithms for MEA transmission systems. In IEEE international conference acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. 2857–2860).
31.
go back to reference Zhang, H., Molisch, A. F., & Zhang, J. (2006). Applying antenna selection in WLANs for achieving broadband multimedia communications. IEEE Transactions on Broadcasting, 52(4), 475–482.CrossRef Zhang, H., Molisch, A. F., & Zhang, J. (2006). Applying antenna selection in WLANs for achieving broadband multimedia communications. IEEE Transactions on Broadcasting, 52(4), 475–482.CrossRef
32.
go back to reference Lee, D., Nooshabadi, S., & Kim, K. (2010). Dual-mode SM/STBC system with antenna subset selection employing ML detection. AEU-International Journal of Electronics and Communications, 64(12), 1128–1136.CrossRef Lee, D., Nooshabadi, S., & Kim, K. (2010). Dual-mode SM/STBC system with antenna subset selection employing ML detection. AEU-International Journal of Electronics and Communications, 64(12), 1128–1136.CrossRef
33.
go back to reference Lee, D., Nooshabadi, S., & Kim, K. (2012). Joint antenna subset selection for spatial multiplexing systems based on statistical and instantaneous selection criteria. AEU-International Journal of Electronics and Communications, 66(9), 715–720.CrossRef Lee, D., Nooshabadi, S., & Kim, K. (2012). Joint antenna subset selection for spatial multiplexing systems based on statistical and instantaneous selection criteria. AEU-International Journal of Electronics and Communications, 66(9), 715–720.CrossRef
34.
go back to reference Jensen, M., & Morris, M. L. (2005). Efficient capacity-based antenna selection for MIMO systems. IEEE Transactions on Vehicular Technology, 54(1), 110–116.CrossRef Jensen, M., & Morris, M. L. (2005). Efficient capacity-based antenna selection for MIMO systems. IEEE Transactions on Vehicular Technology, 54(1), 110–116.CrossRef
35.
go back to reference Lei, C. A. O., Yang, H. W., Zhang, X., & Yang, D. C. (2009). Diversity order of decode-and-forward MIMO relaying with transmit antenna selection. The Journal of China Universities of Posts and Telecommunications, 16(5), 1–7.CrossRef Lei, C. A. O., Yang, H. W., Zhang, X., & Yang, D. C. (2009). Diversity order of decode-and-forward MIMO relaying with transmit antenna selection. The Journal of China Universities of Posts and Telecommunications, 16(5), 1–7.CrossRef
36.
go back to reference Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.CrossRef Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.CrossRef
37.
go back to reference Ding, Z., Gong, Y., Ratnarajah, T., & Cowan, C. F. (2008). On the performance of opportunistic cooperative wireless networks. IEEE Transactions on Communications, 56(8), 1236–1240.CrossRef Ding, Z., Gong, Y., Ratnarajah, T., & Cowan, C. F. (2008). On the performance of opportunistic cooperative wireless networks. IEEE Transactions on Communications, 56(8), 1236–1240.CrossRef
38.
go back to reference Sandhu, S., Nabar, R. U., Gore, D., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Signals, systems and computers, 2000. Conference record of the thirty-fourth asilomar conference (Vol. 1, pp. 567–571). Sandhu, S., Nabar, R. U., Gore, D., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Signals, systems and computers, 2000. Conference record of the thirty-fourth asilomar conference (Vol. 1, pp. 567–571).
39.
go back to reference Yu, X. B., Yin, X., Liu, X. S., & Xu, D. Z. (2012). Performance of variable-power adaptive MQAM with transmit antenna selection and delayed feedback in Nakagami Fading channel. AEU-International Journal of Electronics and Communications, 66(4), 340–348.CrossRef Yu, X. B., Yin, X., Liu, X. S., & Xu, D. Z. (2012). Performance of variable-power adaptive MQAM with transmit antenna selection and delayed feedback in Nakagami Fading channel. AEU-International Journal of Electronics and Communications, 66(4), 340–348.CrossRef
40.
go back to reference Trivedi, Y. N., & Chaturvedi, A. K. (2011). Performance analysis of multiple input single output systems using transmit beamforming and antenna selection with delayed channel state information at the transmitter. Communications, IET, 5(6), 827–834.MathSciNetCrossRefMATH Trivedi, Y. N., & Chaturvedi, A. K. (2011). Performance analysis of multiple input single output systems using transmit beamforming and antenna selection with delayed channel state information at the transmitter. Communications, IET, 5(6), 827–834.MathSciNetCrossRefMATH
41.
go back to reference Zhang, X. J., Gong, Y., & Letaief, K. (2010). On the diversity gain in cooperative relaying channels with imperfect CSIT. IEEE Transactions on Communications, 58(4), 1273–1279.CrossRef Zhang, X. J., Gong, Y., & Letaief, K. (2010). On the diversity gain in cooperative relaying channels with imperfect CSIT. IEEE Transactions on Communications, 58(4), 1273–1279.CrossRef
42.
go back to reference Trivedi, Y. N. (2013). Performance analysis of OFDM system with transmit antenna selection using delayed feedback. AEU-International Journal of Electronics and Communications, 67(8), 671–675.CrossRef Trivedi, Y. N. (2013). Performance analysis of OFDM system with transmit antenna selection using delayed feedback. AEU-International Journal of Electronics and Communications, 67(8), 671–675.CrossRef
43.
go back to reference Eng, T., Kong, N., & Milstein, L. B. (1996). Comparison of diversity combining techniques for Rayleigh-fading channels. IEEE Transactions on Communications, 44(9), 1117–1129.CrossRef Eng, T., Kong, N., & Milstein, L. B. (1996). Comparison of diversity combining techniques for Rayleigh-fading channels. IEEE Transactions on Communications, 44(9), 1117–1129.CrossRef
44.
go back to reference Chen, C. Y., Sezgin, A., Cioffi, J. M., & Paulraj, A. (2008). Antenna selection in space-time block coded systems: performance analysis and low-complexity algorithm. IEEE Transactions on Signal Processing, 56(7), 3303–3314.MathSciNetCrossRef Chen, C. Y., Sezgin, A., Cioffi, J. M., & Paulraj, A. (2008). Antenna selection in space-time block coded systems: performance analysis and low-complexity algorithm. IEEE Transactions on Signal Processing, 56(7), 3303–3314.MathSciNetCrossRef
45.
go back to reference Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels. A unified approach to performance analysis. New York: Wiley.CrossRef Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels. A unified approach to performance analysis. New York: Wiley.CrossRef
Metadata
Title
A Novel Low-Complex Antenna Selection Scheme for Beyond 4G (B4G) Systems
Authors
M. Arthi
P. Arulmozhivarman
Publication date
04-02-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4005-x

Other articles of this Issue 3/2017

Wireless Personal Communications 3/2017 Go to the issue