Skip to main content
Top
Published in: Annals of Telecommunications 1-2/2023

14-01-2023

A novel network traffic prediction method based on a Bayesian network model for establishing the relationship between traffic and population

Authors: Kohei Shiomoto, Tatsuya Otoshi, Masayuki Murata

Published in: Annals of Telecommunications | Issue 1-2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Existing traffic prediction methods are based on previously collected traffic patterns, and the measured data are used to train and create a model to predict future traffic patterns. However, complex spatio-temporal patterns of user demand render prediction of mobile traffic, which accounts for the majority of current network, challenging. In this study, a network traffic prediction method based on a Bayesian network was proposed to model the relationship among network traffic, edge/cloud computing resource usage, and population in a target area. Although an accurate estimate of population in a target area can be obtained using conventional methods, the number of active users and the traffic and the edge/cloud computing resource usage in the target area cannot be accurately estimated. The objective of this study was to reduce the gap between population estimates and the number of active mobile users in an area. The Bayesian network parameters were estimated from the measurement of the past network traffic, edge/cloud computing resource usage, and population. In this study, we assumed that the ratio of the number of communicating users dynamically changes and presented a detailed performance evaluation using the Toy and Milan grid models. The basic performance of the proposed Bayesian network-based prediction method was investigated using a Toy model and confirmed that the proposed model achieved accurate prediction even in a scenario in which the activity factors changed. We evaluated the performance of the proposed model using the Milan grid dataset and confirmed that it achieved accurate results for both single and multiple traffic classes scenario.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Stan, https://​mc-stan.​org/​ (Accessed: 2022-08-31)
 
Literature
1.
go back to reference Mijumbi R, Serrat J, Gorricho JL, Bouten N, Turck FD, Boutaba R (2016) Network function virtualization: state-of-the-art and research challenges, vol 18. Firstquarter Mijumbi R, Serrat J, Gorricho JL, Bouten N, Turck FD, Boutaba R (2016) Network function virtualization: state-of-the-art and research challenges, vol 18. Firstquarter
2.
go back to reference Liu M, Wang L, Siegwart R (2012) DP-Fusion: a generic framework for online multi sensor recognition. In: 2012 IEEE international conference on Multisensor fusion and integration for intelligent systems (MFI), pp 7–12 Liu M, Wang L, Siegwart R (2012) DP-Fusion: a generic framework for online multi sensor recognition. In: 2012 IEEE international conference on Multisensor fusion and integration for intelligent systems (MFI), pp 7–12
3.
go back to reference Shiomoto K, Otoshi T, Murata M (2021) A network and computing resource management method based on population prediction in mobile networks. In: 2021 12th international conference on network of the future (NoF), pp 1–8 Shiomoto K, Otoshi T, Murata M (2021) A network and computing resource management method based on population prediction in mobile networks. In: 2021 12th international conference on network of the future (NoF), pp 1–8
4.
go back to reference Keralapura R, Nucci A, Zhang Z-L, Gao L (2010) Profiling users in a 3g network using hourglass co-clustering. In: Proceedings of the sixteenth annual international conference on mobile computing and networking, ser. MobiCom ’10. New York, NY, USA: Association for Computing Machinery, 2010, pp 341–352 Keralapura R, Nucci A, Zhang Z-L, Gao L (2010) Profiling users in a 3g network using hourglass co-clustering. In: Proceedings of the sixteenth annual international conference on mobile computing and networking, ser. MobiCom ’10. New York, NY, USA: Association for Computing Machinery, 2010, pp 341–352
5.
go back to reference Razaghpanah A, Niaki AA, Vallina-Rodriguez N, Sundaresan S, Amann J, Gill P (2017) Studying TLS usage in android apps. In: Proceedings of the 13th international conference on emerging networking EXperiments and Technologies, ser. CoNEXT ’17. New York, NY, USA: ACM, pp 350–362 Razaghpanah A, Niaki AA, Vallina-Rodriguez N, Sundaresan S, Amann J, Gill P (2017) Studying TLS usage in android apps. In: Proceedings of the 13th international conference on emerging networking EXperiments and Technologies, ser. CoNEXT ’17. New York, NY, USA: ACM, pp 350–362
6.
go back to reference Zhang Q, Hellerstein J, Boutaba R (2011) Characterizing task usage shapes in Google compute clusters. In: Proceedings of the 5th international workshop on large scale distributed systems and Middleware Zhang Q, Hellerstein J, Boutaba R (2011) Characterizing task usage shapes in Google compute clusters. In: Proceedings of the 5th international workshop on large scale distributed systems and Middleware
7.
go back to reference Enami S, Shiomoto K (2019) Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks. In: IEEE 20th International conference on high performance switching and routing (HPSR), pp 1–6 Enami S, Shiomoto K (2019) Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks. In: IEEE 20th International conference on high performance switching and routing (HPSR), pp 1–6
8.
go back to reference Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6 (3):29:1–29:41CrossRef Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6 (3):29:1–29:41CrossRef
9.
go back to reference Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International conference on knowledge discovery and data mining, ser. KDD ’09. New York, NY, USA: ACM, pp 637–646 Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International conference on knowledge discovery and data mining, ser. KDD ’09. New York, NY, USA: ACM, pp 637–646
10.
go back to reference Rong C, Feng J, Li Y (2019) Deep learning models for population flow generation from aggregated mobility data. In: Adjunct proceedings of the 2019 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2019 ACM International symposium on wearable computers, ser. UbiComp/ISWC ’19 Adjunct. New York, NY, USA: association for computing machinery, pp 1008–1013 Rong C, Feng J, Li Y (2019) Deep learning models for population flow generation from aggregated mobility data. In: Adjunct proceedings of the 2019 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2019 ACM International symposium on wearable computers, ser. UbiComp/ISWC ’19 Adjunct. New York, NY, USA: association for computing machinery, pp 1008–1013
11.
go back to reference Orlowski S, Pióro M, Tomaszewski A, Wessäly R (2010) SNDlib 1.0 Survivable network design library. Networks 55(3):276–286 Orlowski S, Pióro M, Tomaszewski A, Wessäly R (2010) SNDlib 1.0 Survivable network design library. Networks 55(3):276–286
12.
go back to reference Niu Z (2011) Tango: traffic-aware network planning and green operation. IEEE Wirel Commun 18(5):25–29CrossRef Niu Z (2011) Tango: traffic-aware network planning and green operation. IEEE Wirel Commun 18(5):25–29CrossRef
13.
go back to reference Feng H, Shu Y, Wang S, Ma M (2006) SVM-based models for predicting WLAN traffic. In: 2006 IEEE international conference on communications, vol 2, pp 597–602 Feng H, Shu Y, Wang S, Ma M (2006) SVM-based models for predicting WLAN traffic. In: 2006 IEEE international conference on communications, vol 2, pp 597–602
14.
go back to reference Zhou B, He D, Sun Z (2006) Traffic modeling and prediction using ARIMA/GARCH model. In: Nejat Ince A, Topuz E (eds) Modeling and simulation tools for emerging telecommunication networks. Boston, MA: Springer US, pp 101–121 Zhou B, He D, Sun Z (2006) Traffic modeling and prediction using ARIMA/GARCH model. In: Nejat Ince A, Topuz E (eds) Modeling and simulation tools for emerging telecommunication networks. Boston, MA: Springer US, pp 101–121
15.
go back to reference Kim H-W, Lee J-H, Choi Y-H, Chung Y-U, Lee H (2011) Dynamic bandwidth provisioning using ARIMA-based traffic forecasting for Mobile WiMAX. Comput Commun 34(1):99– 106CrossRef Kim H-W, Lee J-H, Choi Y-H, Chung Y-U, Lee H (2011) Dynamic bandwidth provisioning using ARIMA-based traffic forecasting for Mobile WiMAX. Comput Commun 34(1):99– 106CrossRef
16.
go back to reference Xu F, Lin Y, Huang J, Wu D, Shi H, Song J, Li Y (2016) Big data driven mobile traffic understanding and forecasting: a time series approach. IEEE Trans Serv Comput 9(5):796–805CrossRef Xu F, Lin Y, Huang J, Wu D, Shi H, Song J, Li Y (2016) Big data driven mobile traffic understanding and forecasting: a time series approach. IEEE Trans Serv Comput 9(5):796–805CrossRef
17.
go back to reference Shu Y, Yu M, Liu J, Yang O (2003) Wireless traffic modeling and prediction using seasonal ARIMA models. In: IEEE International Conference on Communications, 2003. ICC ’03, vol 3, pp 1675–1679 Shu Y, Yu M, Liu J, Yang O (2003) Wireless traffic modeling and prediction using seasonal ARIMA models. In: IEEE International Conference on Communications, 2003. ICC ’03, vol 3, pp 1675–1679
18.
go back to reference Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH
19.
go back to reference Furno A, Fiore M, Stanica R (2017) Joint spatial and temporal classification of mobile traffic demands. In: IEEE INFOCOM 2017 - IEEE conference on computer communications, pp 1–9 Furno A, Fiore M, Stanica R (2017) Joint spatial and temporal classification of mobile traffic demands. In: IEEE INFOCOM 2017 - IEEE conference on computer communications, pp 1–9
20.
go back to reference Nikravesh AY, Ajila SA, Lung C-H, Ding W (2016) Mobile network traffic prediction using MLP, MLPWD, and SVM. In: 2016 IEEE international congress on big data (BigData Congress), pp 402–409 Nikravesh AY, Ajila SA, Lung C-H, Ding W (2016) Mobile network traffic prediction using MLP, MLPWD, and SVM. In: 2016 IEEE international congress on big data (BigData Congress), pp 402–409
21.
go back to reference Oliveira TP, Barbar JS, Soares AS (2016) Computer network traffic prediction: a comparison between traditional and deep learning neural networks. Int J Big Data Intell 3(1):28–37. pMID: 73903CrossRef Oliveira TP, Barbar JS, Soares AS (2016) Computer network traffic prediction: a comparison between traditional and deep learning neural networks. Int J Big Data Intell 3(1):28–37. pMID: 73903CrossRef
22.
go back to reference Nie L, Jiang D, Yu S, Song H (2017) Network traffic prediction based on deep belief network in wireless mesh backbone networks. In: 2017 IEEE wireless communications and networking conference (WCNC), pp 1–5 Nie L, Jiang D, Yu S, Song H (2017) Network traffic prediction based on deep belief network in wireless mesh backbone networks. In: 2017 IEEE wireless communications and networking conference (WCNC), pp 1–5
23.
go back to reference Trinh HD, Giupponi L, Dini P (2018) Mobile traffic prediction from raw data using LSTM networks. In: 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC), pp 1827–1832 Trinh HD, Giupponi L, Dini P (2018) Mobile traffic prediction from raw data using LSTM networks. In: 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC), pp 1827–1832
24.
go back to reference Azari A, Papapetrou P, Denic S, Peters G (2019) Cellular traffic prediction and classification: a comparative evaluation of LSTM and ARIMA Azari A, Papapetrou P, Denic S, Peters G (2019) Cellular traffic prediction and classification: a comparative evaluation of LSTM and ARIMA
25.
go back to reference Mei L, Hu R, Cao H, Liu Y, Han Z, Li F, Li J (2020) Realtime mobile bandwidth prediction using LSTM neural network and Bayesian fusion. Compu Netw 182:107515CrossRef Mei L, Hu R, Cao H, Liu Y, Han Z, Li F, Li J (2020) Realtime mobile bandwidth prediction using LSTM neural network and Bayesian fusion. Compu Netw 182:107515CrossRef
26.
go back to reference Lee D, Zhou S, Niu Z (2013) Spatial modeling of scalable spatially-correlated log-normal distributed traffic inhomogeneity and energy-efficient network planning. In: 2013 IEEE wireless communications and networking conference (WCNC), pp 1285–1290 Lee D, Zhou S, Niu Z (2013) Spatial modeling of scalable spatially-correlated log-normal distributed traffic inhomogeneity and energy-efficient network planning. In: 2013 IEEE wireless communications and networking conference (WCNC), pp 1285–1290
27.
go back to reference Lee D, Zhou S, Zhong X, Niu Z, Zhou X, Zhang H (2014) Spatial modeling of the traffic density in cellular networks. IEEE Wirel Commun 21(1):80–88CrossRef Lee D, Zhou S, Zhong X, Niu Z, Zhou X, Zhang H (2014) Spatial modeling of the traffic density in cellular networks. IEEE Wirel Commun 21(1):80–88CrossRef
28.
go back to reference Huang C-W, Chiang C-T, Li Q (2017) A study of deep learning networks on mobile traffic forecasting. In: 2017 IEEE 28th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 1–6 Huang C-W, Chiang C-T, Li Q (2017) A study of deep learning networks on mobile traffic forecasting. In: 2017 IEEE 28th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 1–6
29.
go back to reference Wang J, Tang J, Xu Z, Wang Y, Xue G, Zhang X, Yang D (2017) Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach. In: IEEE INFOCOM 2017 - IEEE conference on computer communications, pp 1–9 Wang J, Tang J, Xu Z, Wang Y, Xue G, Zhang X, Yang D (2017) Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach. In: IEEE INFOCOM 2017 - IEEE conference on computer communications, pp 1–9
30.
go back to reference Zhang C, Patras P (2018) Long-term mobile traffic forecasting using deep spatio-temporal neural networks. In: Proceedings of the Eighteenth ACM international symposium on mobile ad hoc networking and computing, ser. Mobihoc ’18. New York, NY, USA: association for computing machinery, pp 231– 240 Zhang C, Patras P (2018) Long-term mobile traffic forecasting using deep spatio-temporal neural networks. In: Proceedings of the Eighteenth ACM international symposium on mobile ad hoc networking and computing, ser. Mobihoc ’18. New York, NY, USA: association for computing machinery, pp 231– 240
31.
go back to reference Fred SB, Bonald T, Proutiere A, Régnié G, Roberts JW (2001) Statistical bandwidth sharing: a study of congestion at flow level. In: Proceedings of the 2001 conference on applications, technologies, Archi- tectures, and protocols for computer communications, ser. SIGCOMM ’01. New York, NY, USA: association for computing machinery, pp 111–122 Fred SB, Bonald T, Proutiere A, Régnié G, Roberts JW (2001) Statistical bandwidth sharing: a study of congestion at flow level. In: Proceedings of the 2001 conference on applications, technologies, Archi- tectures, and protocols for computer communications, ser. SIGCOMM ’01. New York, NY, USA: association for computing machinery, pp 111–122
32.
go back to reference Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA (2012) Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM symposium on cloud computing, ser. SoCC ’12. New York, NY, USA: association for computing machinery Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA (2012) Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM symposium on cloud computing, ser. SoCC ’12. New York, NY, USA: association for computing machinery
33.
go back to reference Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella A (2014) Multi-resource packing for cluster schedulers. In: Proceedings of the 2014 ACM conference on SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: association for computing machinery, pp 455–466 Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella A (2014) Multi-resource packing for cluster schedulers. In: Proceedings of the 2014 ACM conference on SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: association for computing machinery, pp 455–466
34.
go back to reference Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks, ser. HotNets ’16. New York, NY, USA: association for computing machinery, pp 50–56 Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks, ser. HotNets ’16. New York, NY, USA: association for computing machinery, pp 50–56
35.
go back to reference Janardhanan D, Barrett E (2017) Cpu workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models. In: 2017 12th International conference for internet technology and secured transactions (ICITST), pp 55–60 Janardhanan D, Barrett E (2017) Cpu workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models. In: 2017 12th International conference for internet technology and secured transactions (ICITST), pp 55–60
36.
go back to reference Hadfield JD et al (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33(2):1–22CrossRef Hadfield JD et al (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33(2):1–22CrossRef
37.
go back to reference Hoffman MD, Gelman A (2011) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo Hoffman MD, Gelman A (2011) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
38.
go back to reference Homan MD, Gelman A (2014) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15(1):1593–1623MATH Homan MD, Gelman A (2014) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15(1):1593–1623MATH
39.
go back to reference Barlacchi G, De Nadai M, Larcher R, Casella A, Chitic C, Torrisi G, Antonelli F, Vespignani A, Pentland A, Lepri B (2015) A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Sci Data, vol 2(150055) Barlacchi G, De Nadai M, Larcher R, Casella A, Chitic C, Torrisi G, Antonelli F, Vespignani A, Pentland A, Lepri B (2015) A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Sci Data, vol 2(150055)
40.
go back to reference Hussain B, Du Q, Ren P (2018) Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks. China Communications 15(4):41–57CrossRef Hussain B, Du Q, Ren P (2018) Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks. China Communications 15(4):41–57CrossRef
41.
go back to reference Zhang C, Ouyang X, Patras P (2017) ZipNet-GAN: inferring fine-grained mobile traffic patterns via a generative adversarial neural network. In: Proceedings of the 13th international conference on emerging networking experiments and technologies, ser. CoNEXT ’17. New York, NY, USA: association for computing machinery, pp 363–375 Zhang C, Ouyang X, Patras P (2017) ZipNet-GAN: inferring fine-grained mobile traffic patterns via a generative adversarial neural network. In: Proceedings of the 13th international conference on emerging networking experiments and technologies, ser. CoNEXT ’17. New York, NY, USA: association for computing machinery, pp 363–375
Metadata
Title
A novel network traffic prediction method based on a Bayesian network model for establishing the relationship between traffic and population
Authors
Kohei Shiomoto
Tatsuya Otoshi
Masayuki Murata
Publication date
14-01-2023
Publisher
Springer International Publishing
Published in
Annals of Telecommunications / Issue 1-2/2023
Print ISSN: 0003-4347
Electronic ISSN: 1958-9395
DOI
https://doi.org/10.1007/s12243-022-00940-9

Other articles of this Issue 1-2/2023

Annals of Telecommunications 1-2/2023 Go to the issue