Skip to main content
Top
Published in: Acta Mechanica Sinica 6/2017

22-09-2017 | Research Paper

A novel parameterization method for the topology optimization of metallic antenna design

Authors: Qi Wang, Renjing Gao, Shutian Liu

Published in: Acta Mechanica Sinica | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, based on a tangential interpolation function and an adaptively increasing penalty-factor strategy (TIPS), a novel parameterization method with a self-penalization scheme aimed for the topology optimization of metallic antenna design is proposed. The topology description is based on the material distribution approach. The proposed tangential interpolation function aims to associate the material resistance with design variables, in which the material resistance is expressed in the arctangent scale and the arctangent resistance is interpolated with the design variables using the rational approximation of material properties. During the optimization process, a strategy with an adaptively increasing penalty factor is used to eliminate the remaining gray scale elements, as illustrated in examples, in the topology optimization based on the proposed tangential interpolation function. Design results of typical examples express the effectiveness of the proposed TIPS parameterization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH
2.
go back to reference Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH
3.
go back to reference Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595–622 (2016)MathSciNetCrossRefMATH Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595–622 (2016)MathSciNetCrossRefMATH
4.
go back to reference Villegas, F.J., Cwik, T., Rahmat-Samii, Y., et al.: A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 52, 2424–2435 (2004)CrossRef Villegas, F.J., Cwik, T., Rahmat-Samii, Y., et al.: A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 52, 2424–2435 (2004)CrossRef
5.
go back to reference Koulouridis, S., Psychoudakis, D., Volakis, J.L.: Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans. Antennas Propag. 55, 594–603 (2007)CrossRef Koulouridis, S., Psychoudakis, D., Volakis, J.L.: Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans. Antennas Propag. 55, 594–603 (2007)CrossRef
6.
go back to reference Ouedraogo, R.O., Rothwell, E.J., Diaz, A., et al.: In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wirel. Propag. Lett. 9, 75–78 (2010)CrossRef Ouedraogo, R.O., Rothwell, E.J., Diaz, A., et al.: In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wirel. Propag. Lett. 9, 75–78 (2010)CrossRef
7.
go back to reference Ouedraogo, R.O., Tang, J., Fuchi, K., et al.: A tunable dual-band miniaturized monopole antenna for compact wireless devices. IEEE Antennas Wirel. Propag. Lett. 13, 1247–1250 (2014)CrossRef Ouedraogo, R.O., Tang, J., Fuchi, K., et al.: A tunable dual-band miniaturized monopole antenna for compact wireless devices. IEEE Antennas Wirel. Propag. Lett. 13, 1247–1250 (2014)CrossRef
8.
go back to reference Tang, J., Ouedraogo, R.O., Rothwell, E.J., et al.: A continuously tunable miniaturized patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1080–1083 (2014)CrossRef Tang, J., Ouedraogo, R.O., Rothwell, E.J., et al.: A continuously tunable miniaturized patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1080–1083 (2014)CrossRef
9.
go back to reference Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetCrossRefMATH Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetCrossRefMATH
10.
go back to reference Guest, J.K., Genut, L.C.S.: Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81, 1019–1045 (2010)MATH Guest, J.K., Genut, L.C.S.: Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81, 1019–1045 (2010)MATH
11.
go back to reference Ruiter, M.J.D., Keulen, F.V.: Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26, 406–416 (2004)CrossRef Ruiter, M.J.D., Keulen, F.V.: Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26, 406–416 (2004)CrossRef
12.
go back to reference Zhou, S., Li, W., Sun, G., et al.: A level-set procedure for the design of electromagnetic metamaterials. Opt. Express 18, 6693–6702 (2010) Zhou, S., Li, W., Sun, G., et al.: A level-set procedure for the design of electromagnetic metamaterials. Opt. Express 18, 6693–6702 (2010)
13.
go back to reference Zhou, S., Li, W., Chen, Y., et al.: Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 2624–2636 (2011)CrossRef Zhou, S., Li, W., Chen, Y., et al.: Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 2624–2636 (2011)CrossRef
14.
go back to reference Zhou, S., Li, W., Li, Q.: Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 229, 6915–6930 (2010)MathSciNetCrossRefMATH Zhou, S., Li, W., Li, Q.: Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 229, 6915–6930 (2010)MathSciNetCrossRefMATH
15.
go back to reference Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)CrossRef Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)CrossRef
16.
go back to reference Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016) Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)
17.
go back to reference Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef
18.
go back to reference Zhang, W., Yuan, J., Zhang, J., et al.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53, 1243–1260 (2016)MathSciNetCrossRef Zhang, W., Yuan, J., Zhang, J., et al.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53, 1243–1260 (2016)MathSciNetCrossRef
19.
go back to reference Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef
20.
go back to reference Zhang, W., Zhong, W., Guo, X.: Explicit layout control in optimal design of structural systems with multiple embedding components. Comput. Methods Appl. Mech. Eng. 290, 290–313 (2015)MathSciNetCrossRef Zhang, W., Zhong, W., Guo, X.: Explicit layout control in optimal design of structural systems with multiple embedding components. Comput. Methods Appl. Mech. Eng. 290, 290–313 (2015)MathSciNetCrossRef
21.
go back to reference Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNetCrossRef Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNetCrossRef
22.
go back to reference Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetCrossRefMATH Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetCrossRefMATH
23.
24.
go back to reference Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)CrossRefMATH Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)CrossRefMATH
25.
go back to reference Diaz, A.R., Sigmund, O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163–177 (2010)MathSciNetCrossRefMATH Diaz, A.R., Sigmund, O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163–177 (2010)MathSciNetCrossRefMATH
26.
go back to reference Aage, N., Mortensen, N., Sigmund, O.: Topology optimization of metallic devices for microwave applications. Int. J. Numer. Methods Eng. 83, 228–248 (2010)MathSciNetMATH Aage, N., Mortensen, N., Sigmund, O.: Topology optimization of metallic devices for microwave applications. Int. J. Numer. Methods Eng. 83, 228–248 (2010)MathSciNetMATH
27.
go back to reference Hassan, E., Wadbro, E., Berggren, M.: Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 62, 2488–2500 (2014)MathSciNetCrossRefMATH Hassan, E., Wadbro, E., Berggren, M.: Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 62, 2488–2500 (2014)MathSciNetCrossRefMATH
28.
go back to reference Erentok, A., Sigmund, O.: Topology optimization of sub-wavelength antennas. IEEE Trans. Antennas Propag. 59, 58–69 (2011)CrossRef Erentok, A., Sigmund, O.: Topology optimization of sub-wavelength antennas. IEEE Trans. Antennas Propag. 59, 58–69 (2011)CrossRef
29.
go back to reference Wadbro, E., Engström, C.: Topology and shape optimization of plasmonic nano-antennas. Comput. Methods Appl. Mech. Eng. 293, 155–169 (2015)MathSciNetCrossRef Wadbro, E., Engström, C.: Topology and shape optimization of plasmonic nano-antennas. Comput. Methods Appl. Mech. Eng. 293, 155–169 (2015)MathSciNetCrossRef
30.
go back to reference Liu, S., Wang, Q., Gao, R.: A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 50, 1165–1174 (2014)CrossRef Liu, S., Wang, Q., Gao, R.: A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 50, 1165–1174 (2014)CrossRef
31.
go back to reference Liu, S., Wang, Q., Gao, R.: MoM-based topology optimization method for planar metallic antenna design. Acta. Mech. Sin. 32, 1058–1064 (2016)MathSciNetCrossRefMATH Liu, S., Wang, Q., Gao, R.: MoM-based topology optimization method for planar metallic antenna design. Acta. Mech. Sin. 32, 1058–1064 (2016)MathSciNetCrossRefMATH
32.
go back to reference Harrington, R.F., Harrington, J.L.: Field Computation by Moment Methods. Oxford University Press, Oxford (1996)MATH Harrington, R.F., Harrington, J.L.: Field Computation by Moment Methods. Oxford University Press, Oxford (1996)MATH
33.
go back to reference Makarov, S.: Antenna and EM Modeling with MATLAB. Princeton University Press, Princeton (2002) Makarov, S.: Antenna and EM Modeling with MATLAB. Princeton University Press, Princeton (2002)
34.
go back to reference Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2010)CrossRef Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2010)CrossRef
35.
go back to reference Rao, S.M., Wilton, D., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)CrossRef Rao, S.M., Wilton, D., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409–418 (1982)CrossRef
36.
go back to reference Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22, 116–124 (2001)CrossRef Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22, 116–124 (2001)CrossRef
37.
go back to reference Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH
Metadata
Title
A novel parameterization method for the topology optimization of metallic antenna design
Authors
Qi Wang
Renjing Gao
Shutian Liu
Publication date
22-09-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 6/2017
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0709-0

Other articles of this Issue 6/2017

Acta Mechanica Sinica 6/2017 Go to the issue

Premium Partners