Skip to main content
Top
Published in: Neural Processing Letters 8/2023

12-08-2023

A Novel Spatio-Temporal Network of Multi-channel CNN and GCN for Human Activity Recognition Based on BAN

Authors: Jianning Wu, Qianghui Liu

Published in: Neural Processing Letters | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To improve the accuracy of human activity recognition (HAR) based on body area network (BAN), a novel spatio-temporal network combining multi-channel convolutional neural network (CNN) with graph convolutional neural network (GCN) is proposed in this paper. Based on BAN including multi-sensors, our model takes advantage of graph topological structure to represent human activity pattern. The multi-channel CNN is firstly constructed to greatly enhance learning ability to capture local representative feature. This benefits to exploit the most representative temporal activity features from time-series sensor data, overcoming the limitation of a single CNN with poor learning ability. And then the GCN with excellect extraction ability to local spatial feature is employed to discover the most representative spatial activity feature associated with the extracted temporal activity features in non-Euclidean space. This could gather the most valuable spatio-temporal dynamic activity feature hidden in human activity for HAR with high-generalization. The open wearable action recognition database dataset including all 13 actiivty patterns is used to evaluate the effectiveness of our proposed model. The experimental results showed that, with the limited sample data, our model can achieve the best generalization (96.01% accuracy, 95.39% precision, and 96.51% recall) to accurately detect all 13 activity patterns when compared with the recent relevant models. This suggested that our technique could gain surperior spatio-temporal activity representation learning capability in Euclidean and non-Euclidean space based on the limited sample data than the compared models. Our study may provide an effective technical solution for HAR wuth high quality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jalal A, Quaid MAK, Kim K (2019) A wrist worn acceleration based human motion analysis and classification for ambient smart home system. J Electr Eng Technol 14(4):1733–1739CrossRef Jalal A, Quaid MAK, Kim K (2019) A wrist worn acceleration based human motion analysis and classification for ambient smart home system. J Electr Eng Technol 14(4):1733–1739CrossRef
2.
go back to reference Aggarwal JK, Ryoo MS (2011) Human activity analysis: a review. Acm Comput Surv (Csur) 43(3):1–43CrossRef Aggarwal JK, Ryoo MS (2011) Human activity analysis: a review. Acm Comput Surv (Csur) 43(3):1–43CrossRef
3.
go back to reference Anwary AR, Yu H, Vassallo M (2018) An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors 18(2):676CrossRef Anwary AR, Yu H, Vassallo M (2018) An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors 18(2):676CrossRef
4.
go back to reference Alrige M, Chatterjee S (2015) Toward a taxonomy of wearable technologies in healthcare. In: International conference on design science research in information systems. Springer, pp 496–504 Alrige M, Chatterjee S (2015) Toward a taxonomy of wearable technologies in healthcare. In: International conference on design science research in information systems. Springer, pp 496–504
5.
go back to reference Capela NA, Lemaire ED, Baddour N (2015) Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE 10(4):0124414CrossRef Capela NA, Lemaire ED, Baddour N (2015) Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE 10(4):0124414CrossRef
6.
go back to reference Lara OD, Labrador MA (2012) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15(3):1192–1209CrossRef Lara OD, Labrador MA (2012) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15(3):1192–1209CrossRef
7.
go back to reference Nickel C, Brandt H, Busch C (2011) Benchmarking the performance of svms and hmms for accelerometer-based biometric gait recognition. In: 2011 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, pp 281–286 Nickel C, Brandt H, Busch C (2011) Benchmarking the performance of svms and hmms for accelerometer-based biometric gait recognition. In: 2011 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, pp 281–286
8.
go back to reference Munoz-Organero M (2019) Outlier detection in wearable sensor data for human activity recognition (har) based on drnns. IEEE Access 7:74422–74436CrossRef Munoz-Organero M (2019) Outlier detection in wearable sensor data for human activity recognition (har) based on drnns. IEEE Access 7:74422–74436CrossRef
9.
go back to reference Jiang W, Yin Z (2015) Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM international conference on multimedia, pp 1307–1310 Jiang W, Yin Z (2015) Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM international conference on multimedia, pp 1307–1310
10.
go back to reference Zou H, Zhou Y, Yang J, Jiang H, Xie L, Spanos C.J (2018) Deepsense: device-free human activity recognition via autoencoder long-term recurrent convolutional network. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–6 Zou H, Zhou Y, Yang J, Jiang H, Xie L, Spanos C.J (2018) Deepsense: device-free human activity recognition via autoencoder long-term recurrent convolutional network. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–6
11.
go back to reference Yang AY, Jafari R, Sastry SS, Bajcsy R (2009) Distributed recognition of human actions using wearable motion sensor networks. J Amb Intell Smart Environ 1(2):103–115 Yang AY, Jafari R, Sastry SS, Bajcsy R (2009) Distributed recognition of human actions using wearable motion sensor networks. J Amb Intell Smart Environ 1(2):103–115
12.
go back to reference Huynh T, Schiele B (2005) Analyzing features for activity recognition. In: Proceedings of the 2005 joint conference on smart objects and ambient intelligence: innovative context-aware services: usages and technologies, pp 159–163 Huynh T, Schiele B (2005) Analyzing features for activity recognition. In: Proceedings of the 2005 joint conference on smart objects and ambient intelligence: innovative context-aware services: usages and technologies, pp 159–163
13.
go back to reference Bulling A, Blanke U, Schiele B (2014) A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput Surv (CSUR) 46(3):1–33CrossRef Bulling A, Blanke U, Schiele B (2014) A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput Surv (CSUR) 46(3):1–33CrossRef
14.
go back to reference Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery, pp 2–11 Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery, pp 2–11
15.
go back to reference Khan MUS, Abbas A, Ali M, Jawad M, Khan SU, Li K, Zomaya AY (2016) On the correlation of sensor location and human activity recognition in body area networks (bans). IEEE Syst J 12(1):82–91CrossRef Khan MUS, Abbas A, Ali M, Jawad M, Khan SU, Li K, Zomaya AY (2016) On the correlation of sensor location and human activity recognition in body area networks (bans). IEEE Syst J 12(1):82–91CrossRef
16.
go back to reference Ignatov A (2018) Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput 62:915–922CrossRef Ignatov A (2018) Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput 62:915–922CrossRef
17.
go back to reference Ha S, Choi S (2016) Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International joint conference on neural networks (IJCNN). IEEE, pp 381–388 Ha S, Choi S (2016) Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International joint conference on neural networks (IJCNN). IEEE, pp 381–388
18.
go back to reference Kuncan F, Kaya Y, Yiner Z, Kaya M (2022) A new approach for physical human activity recognition from sensor signals based on motif patterns and long-short term memory. Biomed Signal Process Control 78:103963CrossRef Kuncan F, Kaya Y, Yiner Z, Kaya M (2022) A new approach for physical human activity recognition from sensor signals based on motif patterns and long-short term memory. Biomed Signal Process Control 78:103963CrossRef
19.
go back to reference Hu Y, Zhang X-Q, Xu L, He FX, Tian Z, She W, Liu W (2020) Harmonic loss function for sensor-based human activity recognition based on lstm recurrent neural networks. IEEE Access 8:135617–135627CrossRef Hu Y, Zhang X-Q, Xu L, He FX, Tian Z, She W, Liu W (2020) Harmonic loss function for sensor-based human activity recognition based on lstm recurrent neural networks. IEEE Access 8:135617–135627CrossRef
20.
go back to reference Nafea O, Abdul W, Muhammad G, Alsulaiman M (2021) Sensor-based human activity recognition with spatio-temporal deep learning. Sensors 21(6):2141CrossRef Nafea O, Abdul W, Muhammad G, Alsulaiman M (2021) Sensor-based human activity recognition with spatio-temporal deep learning. Sensors 21(6):2141CrossRef
21.
go back to reference Challa SK, Kumar A, Semwal VB (2021) A multibranch cnn-bilstm model for human activity recognition using wearable sensor data. Visu Comput 1–15 Challa SK, Kumar A, Semwal VB (2021) A multibranch cnn-bilstm model for human activity recognition using wearable sensor data. Visu Comput 1–15
22.
go back to reference Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) mhealthdroid: a novel framework for agile development of mobile health applications. In: International workshop on ambient assisted living. Springer, pp 91–98 Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) mhealthdroid: a novel framework for agile development of mobile health applications. In: International workshop on ambient assisted living. Springer, pp 91–98
23.
go back to reference Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explor Newsl 12(2):74–82CrossRef Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explor Newsl 12(2):74–82CrossRef
24.
go back to reference Anguita D, Ghio A, Oneto L, Parra Perez X, Reyes Ortiz JL (2013) A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th international european symposium on artificial neural networks, computational intelligence and machine learning, pp 437–442 Anguita D, Ghio A, Oneto L, Parra Perez X, Reyes Ortiz JL (2013) A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th international european symposium on artificial neural networks, computational intelligence and machine learning, pp 437–442
25.
go back to reference Ng W, Zhang M, Wang T (2021) Multi-localized sensitive autoencoder-attention-lstm for skeleton-based action recognition. IEEE Trans Multimedia 24:1678–1690CrossRef Ng W, Zhang M, Wang T (2021) Multi-localized sensitive autoencoder-attention-lstm for skeleton-based action recognition. IEEE Trans Multimedia 24:1678–1690CrossRef
26.
go back to reference Hammerla NY, Halloran S, Plötz T (2016) Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv:1604.08880 Hammerla NY, Halloran S, Plötz T (2016) Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv:​1604.​08880
27.
go back to reference Soleimani E, Nazerfard E (2021) Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing 426:26–34CrossRef Soleimani E, Nazerfard E (2021) Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing 426:26–34CrossRef
28.
go back to reference Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032MathSciNetCrossRefMATH Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032MathSciNetCrossRefMATH
29.
go back to reference Yu J, Tan M, Zhang H, Rui Y, Tao D (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell 44(2):563–578CrossRef Yu J, Tan M, Zhang H, Rui Y, Tao D (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell 44(2):563–578CrossRef
30.
go back to reference Zhang J, Cao Y, Wu Q (2021) Vector of locally and adaptively aggregated descriptors for image feature representation. Pattern Recogn 116:107952CrossRef Zhang J, Cao Y, Wu Q (2021) Vector of locally and adaptively aggregated descriptors for image feature representation. Pattern Recogn 116:107952CrossRef
31.
go back to reference Zhang J, Yang J, Yu J, Fan J (2022) Semisupervised image classification by mutual learning of multiple self-supervised models. Int J Intell Syst 37(5):3117–3141CrossRef Zhang J, Yang J, Yu J, Fan J (2022) Semisupervised image classification by mutual learning of multiple self-supervised models. Int J Intell Syst 37(5):3117–3141CrossRef
32.
go back to reference Yang W, Zhang J, Cai J, Xu Z (2023) Hybridnet: integrating gcn and cnn for skeleton-based action recognition. Appl Intell 53(1):574–585CrossRef Yang W, Zhang J, Cai J, Xu Z (2023) Hybridnet: integrating gcn and cnn for skeleton-based action recognition. Appl Intell 53(1):574–585CrossRef
33.
go back to reference Chen S, Xu K, Mi Z, Jiang X, Sun T (2022) Dual-domain graph convolutional networks for skeleton-based action recognition. Mach Learn 111(7):2381–2406MathSciNetCrossRefMATH Chen S, Xu K, Mi Z, Jiang X, Sun T (2022) Dual-domain graph convolutional networks for skeleton-based action recognition. Mach Learn 111(7):2381–2406MathSciNetCrossRefMATH
34.
go back to reference Ding C, Wen S, Ding W, Liu K, Belyaev E (2022) Temporal segment graph convolutional networks for skeleton-based action recognition. Eng Appl Artif Intell 110:104675CrossRef Ding C, Wen S, Ding W, Liu K, Belyaev E (2022) Temporal segment graph convolutional networks for skeleton-based action recognition. Eng Appl Artif Intell 110:104675CrossRef
35.
go back to reference Ronao CA, Cho S-B (2015) Deep convolutional neural networks for human activity recognition with smartphone sensors. In: Neural information processing: 22nd international conference, ICONIP 2015, November 9–12, 2015, Proceedings, Part IV 22. Springer, pp 46–53 Ronao CA, Cho S-B (2015) Deep convolutional neural networks for human activity recognition with smartphone sensors. In: Neural information processing: 22nd international conference, ICONIP 2015, November 9–12, 2015, Proceedings, Part IV 22. Springer, pp 46–53
36.
go back to reference Ding J, Wang Y (2019) Wifi csi-based human activity recognition using deep recurrent neural network. IEEE Access 7:174257–174269CrossRef Ding J, Wang Y (2019) Wifi csi-based human activity recognition using deep recurrent neural network. IEEE Access 7:174257–174269CrossRef
37.
go back to reference Chen Y, Zhong K, Zhang J, Sun Q, Zhao X (2016) Lstm networks for mobile human activity recognition. In: 2016 International conference on artificial intelligence: technologies and applications. Atlantis Press, pp 50–53 Chen Y, Zhong K, Zhang J, Sun Q, Zhao X (2016) Lstm networks for mobile human activity recognition. In: 2016 International conference on artificial intelligence: technologies and applications. Atlantis Press, pp 50–53
38.
go back to reference Xu C, Chai D, He J, Zhang X, Duan S (2019) Innohar: a deep neural network for complex human activity recognition. Ieee Access 7:9893–9902CrossRef Xu C, Chai D, He J, Zhang X, Duan S (2019) Innohar: a deep neural network for complex human activity recognition. Ieee Access 7:9893–9902CrossRef
39.
go back to reference Ordóñez FJ, Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115CrossRef Ordóñez FJ, Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115CrossRef
40.
go back to reference Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T (2017) Deepsense: A unified deep learning framework for time-series mobile sensing data processing. In: Proceedings of the 26th international conference on world wide web, pp 351–360 Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T (2017) Deepsense: A unified deep learning framework for time-series mobile sensing data processing. In: Proceedings of the 26th international conference on world wide web, pp 351–360
41.
go back to reference Khatun MA, Yousuf MA, Ahmed S, Uddin MZ, Alyami SA, Al-Ashhab S, Akhdar HF, Khan A, Azad A, Moni MA (2022) Deep cnn-lstm with self-attention model for human activity recognition using wearable sensor. IEEE J Transl Eng Health Med 10:1–16CrossRef Khatun MA, Yousuf MA, Ahmed S, Uddin MZ, Alyami SA, Al-Ashhab S, Akhdar HF, Khan A, Azad A, Moni MA (2022) Deep cnn-lstm with self-attention model for human activity recognition using wearable sensor. IEEE J Transl Eng Health Med 10:1–16CrossRef
42.
go back to reference Liao T, Zhao J, Liu Y, Ivanov K, Xiong J, Yan Y (2022) Deep transfer learning with graph neural network for sensor-based human activity recognition. In: 2022 IEEE International conference on bioinformatics and biomedicine (BIBM). IEEE, pp 2445–2452 Liao T, Zhao J, Liu Y, Ivanov K, Xiong J, Yan Y (2022) Deep transfer learning with graph neural network for sensor-based human activity recognition. In: 2022 IEEE International conference on bioinformatics and biomedicine (BIBM). IEEE, pp 2445–2452
43.
go back to reference Gao W, Zhang L, Teng Q, He J, Wu H (2021) Danhar: dual attention network for multimodal human activity recognition using wearable sensors. Appl Soft Comput 111:107728CrossRef Gao W, Zhang L, Teng Q, He J, Wu H (2021) Danhar: dual attention network for multimodal human activity recognition using wearable sensors. Appl Soft Comput 111:107728CrossRef
Metadata
Title
A Novel Spatio-Temporal Network of Multi-channel CNN and GCN for Human Activity Recognition Based on BAN
Authors
Jianning Wu
Qianghui Liu
Publication date
12-08-2023
Publisher
Springer US
Published in
Neural Processing Letters / Issue 8/2023
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-023-11385-z

Other articles of this Issue 8/2023

Neural Processing Letters 8/2023 Go to the issue